These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18723533)

  • 1. The effects of gravity on human walking: a new test of the dynamic similarity hypothesis using a predictive model.
    Raichlen DA
    J Exp Biol; 2008 Sep; 211(Pt 17):2767-72. PubMed ID: 18723533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Criteria for dynamic similarity in bouncing gaits.
    Bullimore SR; Donelan JM
    J Theor Biol; 2008 Jan; 250(2):339-48. PubMed ID: 17983630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of reduced gravity on the kinematics of human walking: a test of the dynamic similarity hypothesis for locomotion.
    Donelan JM; Kram R
    J Exp Biol; 1997 Dec; 200(Pt 24):3193-201. PubMed ID: 9364025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new look at the Dynamic Similarity Hypothesis: the importance of swing phase.
    Raichlen DA; Pontzer H; Shapiro LJ
    Biol Open; 2013; 2(10):1032-6. PubMed ID: 24167713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion.
    De Witt JK; Hagan RD; Cromwell RL
    J Exp Biol; 2008 Apr; 211(Pt 7):1087-92. PubMed ID: 18344482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion in simulated zero gravity: ground reaction forces.
    McCrory JL; Derr J; Cavanagh PR
    Aviat Space Environ Med; 2004 Mar; 75(3):203-10. PubMed ID: 15018286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preferred walk to run transition speed in actual lunar gravity.
    De Witt JK; Edwards WB; Scott-Pandorf MM; Norcross JR; Gernhardt ML
    J Exp Biol; 2014 Sep; 217(Pt 18):3200-3. PubMed ID: 25232195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring dynamic similarity in human running using simulated reduced gravity.
    Donelan JM; Kram R
    J Exp Biol; 2000 Aug; 203(Pt 16):2405-15. PubMed ID: 10903155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new dimensionless number highlighted from mechanical energy exchange during running.
    Delattre N; Moretto P
    J Biomech; 2008 Sep; 41(13):2895-8. PubMed ID: 18706563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Froude number corrections in anthropological studies.
    Steudel-Numbers K; Weaver TD
    Am J Phys Anthropol; 2006 Sep; 131(1):27-32. PubMed ID: 16485296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics and mechanics for partial gravity locomotion.
    Newman DJ; Alexander HL; Webbon BW
    Aviat Space Environ Med; 1994 Sep; 65(9):815-23. PubMed ID: 7818450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamically similar locomotion in horses.
    Bullimore SR; Burn JF
    J Exp Biol; 2006 Feb; 209(Pt 3):455-65. PubMed ID: 16424095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of vertical ground reaction forces on individual limbs calculated from kinematics of horse locomotion.
    Bobbert MF; Gómez Alvarez CB; van Weeren PR; Roepstorff L; Weishaupt MA
    J Exp Biol; 2007 Jun; 210(Pt 11):1885-96. PubMed ID: 17515415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.
    Pontzer H
    J Exp Biol; 2007 Feb; 210(Pt 3):484-94. PubMed ID: 17234618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of two-dimensional human walking: a test of the lambda-model.
    Günther M; Ruder H
    Biol Cybern; 2003 Aug; 89(2):89-106. PubMed ID: 12905038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new model predicting locomotor cost from limb length via force production.
    Pontzer H
    J Exp Biol; 2005 Apr; 208(Pt 8):1513-24. PubMed ID: 15802675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal integration of gravity in trajectory planning of vertical pointing movements.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2009 Aug; 102(2):786-96. PubMed ID: 19458149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invariant aspects of human locomotion in different gravitational environments.
    Minetti AE
    Acta Astronaut; 2001; 49(3-10):191-8. PubMed ID: 11669109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.