These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 18723541)

  • 1. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs.
    Nava H; Carballo JL
    J Exp Biol; 2008 Sep; 211(Pt 17):2827-31. PubMed ID: 18723541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical versus mechanical bioerosion of coral reefs by boring sponges--lessons from Pione cf. vastifica.
    Zundelevich A; Lazar B; Ilan M
    J Exp Biol; 2007 Jan; 210(Pt 1):91-6. PubMed ID: 17170152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioerosion caused by the sea urchin Diadema Mexicanum (Echinodermata: Echinoidea) at Bahías de Huatulco, Western Mexico.
    Herrera-Escalante T; López-Pérez RA; Leyte-Morales GE
    Rev Biol Trop; 2005 Dec; 53 Suppl 3():263-73. PubMed ID: 17469255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.
    Stubler AD; Furman BT; Peterson BJ
    Glob Chang Biol; 2015 Nov; 21(11):4006-20. PubMed ID: 26087148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges.
    Webb AE; Pomponi SA; van Duyl FC; Reichart GJ; de Nooijer LJ
    Sci Rep; 2019 Jan; 9(1):758. PubMed ID: 30679551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. With or without nutrients, sponges are boring: No effect of inorganic nutrients on clionaid sponge bioerosion of carbonate substrate.
    Stubler AD; Sardine M; Carroll JM; Finelli CM
    Mar Pollut Bull; 2024 Sep; 206():116738. PubMed ID: 39079474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Sedimentation on reef communities at Bahías de Huatulco, Oaxaca, Mexico].
    Granja Fernández MR; López Pérez RA
    Rev Biol Trop; 2008 Sep; 56(3):1179-87. PubMed ID: 19419037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excavating sponges from the Pacific of Central America, descriptions and a faunistic record.
    Pacheco C; Carballo JL; CortÉs J; Segovia J; Trejo A
    Zootaxa; 2018 Jan; 4370(5):451-491. PubMed ID: 29689819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Diversity and relative abundance of corals, octocorals and sponges at Jaragua National Park, Dominican Republic].
    Weil E
    Rev Biol Trop; 2006 Jun; 54(2):423-43. PubMed ID: 18494313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sponge biomass and bioerosion rates increase under ocean warming and acidification.
    Fang JK; Mello-Athayde MA; Schönberg CH; Kline DI; Hoegh-Guldberg O; Dove S
    Glob Chang Biol; 2013 Dec; 19(12):3581-91. PubMed ID: 23893528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sponge diversity in Eastern Tropical Pacific coral reefs: an interoceanic comparison.
    Carballo JL; Cruz-Barraza JA; Vega C; Nava H; Chávez-Fuentes MDC
    Sci Rep; 2019 Jun; 9(1):9409. PubMed ID: 31253874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boring sponges, an increasing threat for coral reefs affected by bleaching events.
    Carballo JL; Bautista E; Nava H; Cruz-Barraza JA; Chávez JA
    Ecol Evol; 2013 Apr; 3(4):872-86. PubMed ID: 23610632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean.
    van Woesik R; Cacciapaglia CW
    PLoS One; 2018; 13(5):e0197077. PubMed ID: 29738545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A relic coral fauna threatened by global changes and human activities, Eastern Brazil.
    Leão ZM; Kikuchi RK
    Mar Pollut Bull; 2005; 51(5-7):599-611. PubMed ID: 15913660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential.
    Perry CT; Murphy GN; Kench PS; Edinger EN; Smithers SG; Steneck RS; Mumby PJ
    Proc Biol Sci; 2014 Dec; 281(1796):20142018. PubMed ID: 25320166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Akumal's reefs: stony coral communities along the developing Mexican Caribbean coastline.
    Roy RE
    Rev Biol Trop; 2004 Dec; 52(4):869-81. PubMed ID: 17354396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs.
    Ward-Paige CA; Risk MJ; Sherwood OA; Jaap WC
    Mar Pollut Bull; 2005; 51(5-7):570-9. PubMed ID: 15946702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influences of diurnal variability and ocean acidification on the bioerosion rates of two reef-dwelling Caribbean sponges.
    Morris J; Enochs I; Webb A; de Bakker D; Soderberg N; Kolodziej G; Manzello D
    Glob Chang Biol; 2022 Dec; 28(23):7126-7138. PubMed ID: 36129389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of land runoff on rates and agents of bioerosion of coral substrates.
    Hutchings P; Peyrot-Clausade M; Osnorno A
    Mar Pollut Bull; 2005; 51(1-4):438-47. PubMed ID: 15757742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao.
    de Bakker DM; Webb AE; van den Bogaart LA; van Heuven SMAC; Meesters EH; van Duyl FC
    PLoS One; 2018; 13(5):e0197824. PubMed ID: 29847572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.