BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 18723541)

  • 1. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs.
    Nava H; Carballo JL
    J Exp Biol; 2008 Sep; 211(Pt 17):2827-31. PubMed ID: 18723541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical versus mechanical bioerosion of coral reefs by boring sponges--lessons from Pione cf. vastifica.
    Zundelevich A; Lazar B; Ilan M
    J Exp Biol; 2007 Jan; 210(Pt 1):91-6. PubMed ID: 17170152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioerosion caused by the sea urchin Diadema Mexicanum (Echinodermata: Echinoidea) at Bahías de Huatulco, Western Mexico.
    Herrera-Escalante T; López-Pérez RA; Leyte-Morales GE
    Rev Biol Trop; 2005 Dec; 53 Suppl 3():263-73. PubMed ID: 17469255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.
    Stubler AD; Furman BT; Peterson BJ
    Glob Chang Biol; 2015 Nov; 21(11):4006-20. PubMed ID: 26087148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges.
    Webb AE; Pomponi SA; van Duyl FC; Reichart GJ; de Nooijer LJ
    Sci Rep; 2019 Jan; 9(1):758. PubMed ID: 30679551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Sedimentation on reef communities at Bahías de Huatulco, Oaxaca, Mexico].
    Granja Fernández MR; López Pérez RA
    Rev Biol Trop; 2008 Sep; 56(3):1179-87. PubMed ID: 19419037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excavating sponges from the Pacific of Central America, descriptions and a faunistic record.
    Pacheco C; Carballo JL; CortÉs J; Segovia J; Trejo A
    Zootaxa; 2018 Jan; 4370(5):451-491. PubMed ID: 29689819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Diversity and relative abundance of corals, octocorals and sponges at Jaragua National Park, Dominican Republic].
    Weil E
    Rev Biol Trop; 2006 Jun; 54(2):423-43. PubMed ID: 18494313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sponge biomass and bioerosion rates increase under ocean warming and acidification.
    Fang JK; Mello-Athayde MA; Schönberg CH; Kline DI; Hoegh-Guldberg O; Dove S
    Glob Chang Biol; 2013 Dec; 19(12):3581-91. PubMed ID: 23893528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sponge diversity in Eastern Tropical Pacific coral reefs: an interoceanic comparison.
    Carballo JL; Cruz-Barraza JA; Vega C; Nava H; Chávez-Fuentes MDC
    Sci Rep; 2019 Jun; 9(1):9409. PubMed ID: 31253874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boring sponges, an increasing threat for coral reefs affected by bleaching events.
    Carballo JL; Bautista E; Nava H; Cruz-Barraza JA; Chávez JA
    Ecol Evol; 2013 Apr; 3(4):872-86. PubMed ID: 23610632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean.
    van Woesik R; Cacciapaglia CW
    PLoS One; 2018; 13(5):e0197077. PubMed ID: 29738545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A relic coral fauna threatened by global changes and human activities, Eastern Brazil.
    Leão ZM; Kikuchi RK
    Mar Pollut Bull; 2005; 51(5-7):599-611. PubMed ID: 15913660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential.
    Perry CT; Murphy GN; Kench PS; Edinger EN; Smithers SG; Steneck RS; Mumby PJ
    Proc Biol Sci; 2014 Dec; 281(1796):20142018. PubMed ID: 25320166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Akumal's reefs: stony coral communities along the developing Mexican Caribbean coastline.
    Roy RE
    Rev Biol Trop; 2004 Dec; 52(4):869-81. PubMed ID: 17354396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs.
    Ward-Paige CA; Risk MJ; Sherwood OA; Jaap WC
    Mar Pollut Bull; 2005; 51(5-7):570-9. PubMed ID: 15946702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influences of diurnal variability and ocean acidification on the bioerosion rates of two reef-dwelling Caribbean sponges.
    Morris J; Enochs I; Webb A; de Bakker D; Soderberg N; Kolodziej G; Manzello D
    Glob Chang Biol; 2022 Dec; 28(23):7126-7138. PubMed ID: 36129389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of land runoff on rates and agents of bioerosion of coral substrates.
    Hutchings P; Peyrot-Clausade M; Osnorno A
    Mar Pollut Bull; 2005; 51(1-4):438-47. PubMed ID: 15757742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao.
    de Bakker DM; Webb AE; van den Bogaart LA; van Heuven SMAC; Meesters EH; van Duyl FC
    PLoS One; 2018; 13(5):e0197824. PubMed ID: 29847572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs.
    Chaves-Fonnegra A; Riegl B; Zea S; Lopez JV; Smith T; Brandt M; Gilliam DS
    Glob Chang Biol; 2018 Feb; 24(2):773-785. PubMed ID: 29076634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.