BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18723546)

  • 1. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device.
    Latz MI; Bovard M; VanDelinder V; Segre E; Rohr J; Groisman A
    J Exp Biol; 2008 Sep; 211(Pt 17):2865-75. PubMed ID: 18723546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of dinoflagellate bioluminescence to characterize cell stimulation in bioreactors.
    Chen AK; Latz MI; Frangos JA
    Biotechnol Bioeng; 2003 Jul; 83(1):93-103. PubMed ID: 12740936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study.
    Latz MI; Juhl AR; Ahmed AM; Elghobashi SE; Rohr J
    J Exp Biol; 2004 May; 207(Pt 11):1941-51. PubMed ID: 15107447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-stress dependence of dinoflagellate bioluminescence.
    Maldonado EM; Latz MI
    Biol Bull; 2007 Jun; 212(3):242-9. PubMed ID: 17565113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sensitivity of the dinoflagellate Crypthecodinium cohnii to transient hydrodynamic forces and cell-bubble interactions.
    Hu W; Gladue R; Hansen J; Wojnar C; Chalmers JJ
    Biotechnol Prog; 2007; 23(6):1355-62. PubMed ID: 17973490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioluminescence in Dinoflagellates: Evidence that the Adaptive Value of Bioluminescence in Dinoflagellates is Concentration Dependent.
    Hanley KA; Widder EA
    Photochem Photobiol; 2017 Mar; 93(2):519-530. PubMed ID: 28063175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum.
    Du Yoo Y; Jeong HJ; Kim MS; Kang NS; Song JY; Shin W; Kim KY; Lee K
    J Eukaryot Microbiol; 2009; 56(5):413-20. PubMed ID: 19737193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Millisecond denaturation dynamics of fluorescent proteins revealed by femtoliter container on micro-thermodevice.
    Arata HF; Gillot F; Nojima T; Fujii T; Fujita H
    Lab Chip; 2008 Sep; 8(9):1436-40. PubMed ID: 18818796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative model for flow-induced bioluminescence in dinoflagellates.
    Deane GB; Stokes MD
    J Theor Biol; 2005 Nov; 237(2):147-69. PubMed ID: 15975605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for shear-induced increase in membrane fluidity in the dinoflagellate Lingulodinium polyedrum.
    Mallipattu SK; Haidekker MA; Von Dassow P; Latz MI; Frangos JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jun; 188(5):409-16. PubMed ID: 12073085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration.
    Yoo YD; Jeong HJ; Kang NS; Song JY; Kim KY; Lee G; Kim J
    J Eukaryot Microbiol; 2010; 57(2):145-58. PubMed ID: 20487129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity.
    Rosen G; Osorio-Robayo A; Rivera-Duarte I; Lapota D
    Arch Environ Contam Toxicol; 2008 May; 54(4):606-11. PubMed ID: 18026774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Study of Dinoflagellate Bioluminescence.
    Wang MY; Liu YJ
    Photochem Photobiol; 2017 Mar; 93(2):511-518. PubMed ID: 27796046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated optics microfluidic device for detecting single DNA molecules.
    Krogmeier JR; Schaefer I; Seward G; Yantz GR; Larson JW
    Lab Chip; 2007 Dec; 7(12):1767-74. PubMed ID: 18030399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence.
    Chen AK; Latz MI; Sobolewski P; Frangos JA
    Am J Physiol Regul Integr Comp Physiol; 2007 May; 292(5):R2020-7. PubMed ID: 17322118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of bioluminescent dinoflagellates as an environmental risk assessment tool.
    Lapota D; Osorio AR; Liao C; Bjorndal B
    Mar Pollut Bull; 2007 Dec; 54(12):1857-67. PubMed ID: 17928009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using bioluminescence as a tool for studying diversity in marine zooplankton and dinoflagellates: an initial assessment.
    Letendre F; Blackburn A; Malkiel E; Twardowski M
    PeerJ; 2024; 12():e17516. PubMed ID: 38881863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological investigation of the bioluminescence signaling pathway of the dinoflagellate Lingulodinium polyedrum: evidence for the role of stretch-activated ion channels.
    Jin K; Klima JC; Deane G; Dale Stokes M; Latz MI
    J Phycol; 2013 Aug; 49(4):733-45. PubMed ID: 27007206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population fluctuations of Pyrodinium bahamense and Ceratium furca (Dinophyceae) in Laguna Grande, Puerto Rico, and environmental variables associated during a three-year period.
    Sastre MP; Sánchez E; Flores M; Astacio S; Rodríguez J; Santiago M; Olivieri K; Francis V; Núñez J
    Rev Biol Trop; 2013 Dec; 61(4):1799-813. PubMed ID: 24432535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.