These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 18723614)
1. Use of CDP-glycerol as an alternate acceptor for the teichoic acid polymerase reveals that membrane association regulates polymer length. Schertzer JW; Brown ED J Bacteriol; 2008 Nov; 190(21):6940-7. PubMed ID: 18723614 [TBL] [Abstract][Full Text] [Related]
2. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. Schertzer JW; Brown ED J Biol Chem; 2003 May; 278(20):18002-7. PubMed ID: 12637499 [TBL] [Abstract][Full Text] [Related]
3. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Lovering AL; Lin LY; Sewell EW; Spreter T; Brown ED; Strynadka NC Nat Struct Mol Biol; 2010 May; 17(5):582-9. PubMed ID: 20400947 [TBL] [Abstract][Full Text] [Related]
4. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. Sewell EW; Pereira MP; Brown ED J Biol Chem; 2009 Aug; 284(32):21132-8. PubMed ID: 19520862 [TBL] [Abstract][Full Text] [Related]
5. The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro. Bhavsar AP; Truant R; Brown ED J Biol Chem; 2005 Nov; 280(44):36691-700. PubMed ID: 16150696 [TBL] [Abstract][Full Text] [Related]
6. In vitro synthesis of the unit that links teichoic acid to peptidoglycan. Hancock I; Baddiley J J Bacteriol; 1976 Mar; 125(3):880-6. PubMed ID: 815251 [TBL] [Abstract][Full Text] [Related]
7. Control of synthesis of wall teichoic acid in phosphate-starved cultures of Bacillus subtilis W23. Cheah SC; Hussey H; Baddiley J Eur J Biochem; 1981 Sep; 118(3):497-500. PubMed ID: 6271552 [TBL] [Abstract][Full Text] [Related]
8. CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). Pooley HM; Abellan FX; Karamata D J Bacteriol; 1992 Jan; 174(2):646-9. PubMed ID: 1309530 [TBL] [Abstract][Full Text] [Related]
9. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23. Yokoyama K; Miyashita T; Araki Y; Ito E Eur J Biochem; 1986 Dec; 161(2):479-89. PubMed ID: 3096735 [TBL] [Abstract][Full Text] [Related]
10. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. Bhavsar AP; Erdman LK; Schertzer JW; Brown ED J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of wall teichoic acids in Staphylococcus aureus H, Micrococcus varians and Bacillus subtilis W23. Involvement of lipid intermediates containing the disaccharide N-acetylmannosaminyl N-acetylglucosamine. Harrington CR; Baddiley J Eur J Biochem; 1985 Dec; 153(3):639-45. PubMed ID: 3935442 [TBL] [Abstract][Full Text] [Related]
15. Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. Allison SE; D'Elia MA; Arar S; Monteiro MA; Brown ED J Biol Chem; 2011 Jul; 286(27):23708-16. PubMed ID: 21558268 [TBL] [Abstract][Full Text] [Related]
16. A conditional-lethal mutant of bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. Pooley HM; Abellan FX; Karamata D J Gen Microbiol; 1991 Apr; 137(4):921-8. PubMed ID: 1649892 [TBL] [Abstract][Full Text] [Related]