BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18724051)

  • 1. Gross deletions and translocations in human genetic disease.
    Abeysinghe SS; Chuzhanova N; Cooper DN
    Genome Dyn; 2006; 1():17-34. PubMed ID: 18724051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs.
    Abeysinghe SS; Chuzhanova N; Krawczak M; Ball EV; Cooper DN
    Hum Mutat; 2003 Sep; 22(3):229-44. PubMed ID: 12938088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.
    Chuzhanova N; Abeysinghe SS; Krawczak M; Cooper DN
    Hum Mutat; 2003 Sep; 22(3):245-51. PubMed ID: 12938089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gross Rearrangement Breakpoint Database (GRaBD).
    Abeysinghe SS; Stenson PD; Krawczak M; Cooper DN
    Hum Mutat; 2004 Mar; 23(3):219-21. PubMed ID: 14974079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment.
    Krawczak M; Cooper DN
    Hum Genet; 1991 Mar; 86(5):425-41. PubMed ID: 2016084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic rearrangements in inherited disease and cancer.
    Chen JM; Cooper DN; FĂ©rec C; Kehrer-Sawatzki H; Patrinos GP
    Semin Cancer Biol; 2010 Aug; 20(4):222-33. PubMed ID: 20541013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of non-B DNA structures in gross chromosomal rearrangements.
    Bacolla A; Wojciechowska M; Kosmider B; Larson JE; Wells RD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1161-70. PubMed ID: 16807140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks.
    Povirk LF
    DNA Repair (Amst); 2006 Sep; 5(9-10):1199-212. PubMed ID: 16822725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of breakpoint sequences of five rearrangements in L1CAM and ABCD1 (ALD) genes.
    Kutsche K; Ressler B; Katzera HG; Orth U; Gillessen-Kaesbach G; Morlot S; Schwinger E; Gal A
    Hum Mutat; 2002 May; 19(5):526-35. PubMed ID: 11968085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms.
    Shaw CJ; Lupski JR
    Hum Genet; 2005 Jan; 116(1-2):1-7. PubMed ID: 15526218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements.
    Ballif BC; Wakui K; Gajecka M; Shaffer LG
    Hum Genet; 2004 Jan; 114(2):198-206. PubMed ID: 14579147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of sequence motifs at the breakpoint junctions in three t(1;9)(p36.3;q34) and delineation of mechanisms involved in generating balanced translocations.
    Gajecka M; Pavlicek A; Glotzbach CD; Ballif BC; Jarmuz M; Jurka J; Shaffer LG
    Hum Genet; 2006 Nov; 120(4):519-26. PubMed ID: 16847692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.
    D'Angelo CS; Gajecka M; Kim CA; Gentles AJ; Glotzbach CD; Shaffer LG; Koiffmann CP
    Hum Genet; 2009 Jun; 125(5-6):551-63. PubMed ID: 19271239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis.
    Weckselblatt B; Hermetz KE; Rudd MK
    Genome Res; 2015 Jul; 25(7):937-47. PubMed ID: 26070663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin structural elements and chromosomal translocations in leukemia.
    Zhang Y; Rowley JD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1282-97. PubMed ID: 16893685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeologous recombination between AluSx-sequences as a cause of hemophilia.
    Rossetti LC; Goodeve A; Larripa IB; De Brasi CD
    Hum Mutat; 2004 Nov; 24(5):440. PubMed ID: 15459970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of illegitimate V(D)J recombination or microhomology-mediated nonhomologous end-joining in the formation of intragenic deletions of the Notch1 gene in mouse thymic lymphomas.
    Tsuji H; Ishii-Ohba H; Katsube T; Ukai H; Aizawa S; Doi M; Hioki K; Ogiu T
    Cancer Res; 2004 Dec; 64(24):8882-90. PubMed ID: 15604248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breakpoints of gross deletions coincide with non-B DNA conformations.
    Bacolla A; Jaworski A; Larson JE; Jakupciak JP; Chuzhanova N; Abeysinghe SS; O'Connell CD; Cooper DN; Wells RD
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14162-7. PubMed ID: 15377784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for non-homologous end joining and non-allelic homologous recombination in atypical NF1 microdeletions.
    Venturin M; Gervasini C; Orzan F; Bentivegna A; Corrado L; Colapietro P; Friso A; Tenconi R; Upadhyaya M; Larizza L; Riva P
    Hum Genet; 2004 Jun; 115(1):69-80. PubMed ID: 15103551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the mechanism of chromosomal deletion: characterization of 39 deletion breakpoints in introns 47 and 48 of the human dystrophin gene.
    Toffolatti L; Cardazzo B; Nobile C; Danieli GA; Gualandi F; Muntoni F; Abbs S; Zanetti P; Angelini C; Ferlini A; Fanin M; Patarnello T
    Genomics; 2002 Nov; 80(5):523-30. PubMed ID: 12408970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.