These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 187243)

  • 1. Use of phospholipid-clay complexes for determining vibrational spectra of membrane related systems.
    Spiker RC; Pinnavaia TJ; Levin IW
    Biochim Biophys Acta; 1976 Dec; 455(2):588-96. PubMed ID: 187243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bilayer curvature on vibrational Raman spectroscopic behavior of phospholipid-water assemblies.
    Spiker RC; Levin IW
    Biochim Biophys Acta; 1976 Dec; 455(2):560-75. PubMed ID: 999928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational Raman spectra of lipid systems containing amphotericin B.
    Bunow MR; Levin IW
    Biochim Biophys Acta; 1977 Jan; 464(1):202-16. PubMed ID: 831791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrocarbon trans-gauche isomerization in phospholipid bilayer gel assemblies.
    Yellin N; Levin IW
    Biochemistry; 1977 Feb; 16(4):642-7. PubMed ID: 836805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuterated phospholipids as nonperturbing components for Raman studies of biomembranes.
    Gaber BP; Yager P; Peticolas WL
    Biophys J; 1978 May; 22(2):191-207. PubMed ID: 580768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Active Vibrational Spectroscopy of α-Aminoisobutyric Acid Foldamers in Organic Solvents and Phospholipid Bilayers.
    Lizio MG; Andrushchenko V; Pike SJ; Peters AD; Whitehead GFS; Vitórica-Yrezábal IJ; Mutter ST; Clayden J; Bouř P; Blanch EW; Webb SJ
    Chemistry; 2018 Jul; 24(37):9399-9408. PubMed ID: 29745985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of sonication on the hydrocarbon chain conformation in model membrane systems: a Raman spectroscopic study.
    Mendelsohn R; Sunder S; Bernstein HJ
    Biochim Biophys Acta; 1976 Feb; 419(3):563-9. PubMed ID: 1247573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature and molecular interactions on the vibrational infrared spectra of phospholipid vesicles.
    Asher IM; Levin IW
    Biochim Biophys Acta; 1977 Jul; 468(1):63-72. PubMed ID: 884083
    [No Abstract]   [Full Text] [Related]  

  • 9. Interpretation of biomembrane structure by Raman difference spectroscopy. Nature of the endothermic transitions in phosphatidylcholines.
    Gaber BP; Yager P; Peticolas WL
    Biophys J; 1978 Feb; 21(2):161-76. PubMed ID: 623864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectroscopy of phosphatidylcholines in aqueous suspension. A study of the phosphate group vibrations.
    Arrondo JL; Goñi FM; Macarulla JM
    Biochim Biophys Acta; 1984 Jun; 794(1):165-8. PubMed ID: 6547352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic study of the conformational changes of thyroxine induced by interactions with phospholipid.
    Alvarez RM; Della Védova CO; Mack HG; Farías RN; Hildebrandt P
    Eur Biophys J; 2002 Oct; 31(6):448-53. PubMed ID: 12355254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational sum-frequency generation activity of a 2,4-dinitrophenyl phospholipid hybrid bilayer: retrieving orientational parameters from a DFT analysis of experimental data.
    Lis D; Guthmuller J; Champagne B; Humbert C; Busson B; Peremans A; Cecchet F
    Chemphyschem; 2013 Apr; 14(6):1227-36. PubMed ID: 23554335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopic studies of biological membrane model systems: dietherlecithins.
    Sunder S; Bernstein HJ
    Chem Phys Lipids; 1978 Nov; 22(4):279-83. PubMed ID: 719822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of deuterated phospholipids in Raman spectroscopic studies of membrane structure. I. Multilayers of dimyristoyl phosphatidylcholine (and its -d54 derivative) with distearoyl phosphatidylcholine.
    Mendelsohn R; Maisano J
    Biochim Biophys Acta; 1978 Jan; 506(2):192-201. PubMed ID: 620028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of biomembrane models.
    Vergoten G
    Biospectroscopy; 1998; 4(5 Suppl):S41-6. PubMed ID: 9787913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy.
    Casal HL; Mantsch HH
    Biochim Biophys Acta; 1984 Dec; 779(4):381-401. PubMed ID: 6391546
    [No Abstract]   [Full Text] [Related]  

  • 17. Normal vibrational modes of phospholipid bilayers observed by low-frequency Raman scattering.
    Surovtsev NV; Dmitriev AA; Dzuba SA
    Phys Rev E; 2017 Mar; 95(3-1):032412. PubMed ID: 28415343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vibrational spectroscopic study of the silicate mineral pectolite - NaCa₂Si₃O₈(OH).
    Frost RL; López A; Theiss FL; Romano AW; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():58-62. PubMed ID: 25004896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocarbon chain disorder in lipid bilayers. Temperature dependent Raman spectra of 1,2-diacyl phosphatidylcholine-water gels.
    Yellin N; Levin IW
    Biochim Biophys Acta; 1977 Nov; 489(2):177-90. PubMed ID: 922023
    [No Abstract]   [Full Text] [Related]  

  • 20. Hybrid bilayer membranes in air and water: infrared spectroscopy and neutron reflectivity studies.
    Meuse CW; Krueger S; Majkrzak CF; Dura JA; Fu J; Connor JT; Plant AL
    Biophys J; 1998 Mar; 74(3):1388-98. PubMed ID: 9512035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.