BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 18724362)

  • 21. RESOLFT Nanoscopy of Fixed Cells Using a Z-Domain Based Fusion Protein for Labelling.
    Ilgen P; Grotjohann T; Jans DC; Kilisch M; Hell SW; Jakobs S
    PLoS One; 2015; 10(9):e0136233. PubMed ID: 26375606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa.
    Dedecker P; Hotta J; Flors C; Sliwa M; Uji-i H; Roeffaers MB; Ando R; Mizuno H; Miyawaki A; Hofkens J
    J Am Chem Soc; 2007 Dec; 129(51):16132-41. PubMed ID: 18047340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI).
    Zhang X; Chen X; Zeng Z; Zhang M; Sun Y; Xi P; Peng J; Xu P
    ACS Nano; 2015 Mar; 9(3):2659-67. PubMed ID: 25695314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization.
    Roebroek T; Duwé S; Vandenberg W; Dedecker P
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28930199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-label STED nanoscopy of living cells using photochromism.
    Willig KI; Stiel AC; Brakemann T; Jakobs S; Hell SW
    Nano Lett; 2011 Sep; 11(9):3970-3. PubMed ID: 21786833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron.
    Brakemann T; Weber G; Andresen M; Groenhof G; Stiel AC; Trowitzsch S; Eggeling C; Grubmüller H; Hell SW; Wahl MC; Jakobs S
    J Biol Chem; 2010 May; 285(19):14603-9. PubMed ID: 20236929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational design of enhanced photoresistance in a photoswitchable fluorescent protein.
    Duan C; Byrdin M; El Khatib M; Henry X; Adam V; Bourgeois D
    Methods Appl Fluoresc; 2015 Jan; 3(1):014004. PubMed ID: 29148481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamic Indicators of the Photoswitching Properties of Green Fluorescent Proteins.
    Smyrnova D; Moeyaert B; Michielssens S; Hofkens J; Dedecker P; Ceulemans A
    J Phys Chem B; 2015 Sep; 119(36):12007-16. PubMed ID: 26305506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins.
    Hofmann M; Eggeling C; Jakobs S; Hell SW
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17565-9. PubMed ID: 16314572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Near-infrared STED nanoscopy with an engineered bacterial phytochrome.
    Kamper M; Ta H; Jensen NA; Hell SW; Jakobs S
    Nat Commun; 2018 Nov; 9(1):4762. PubMed ID: 30420676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable.
    Bizzarri R; Serresi M; Cardarelli F; Abbruzzetti S; Campanini B; Viappiani C; Beltram F
    J Am Chem Soc; 2010 Jan; 132(1):85-95. PubMed ID: 19958004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein Dreiklang.
    Jensen NA; Danzl JG; Willig KI; Lavoie-Cardinal F; Brakemann T; Hell SW; Jakobs S
    Chemphyschem; 2014 Mar; 15(4):756-62. PubMed ID: 24497300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
    Lummer M; Humpert F; Steuwe C; Caesar K; Schüttpelz M; Sauer M; Staiger D
    Traffic; 2011 Jun; 12(6):693-702. PubMed ID: 21453442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants.
    Flors C; Hotta J; Uji-i H; Dedecker P; Ando R; Mizuno H; Miyawaki A; Hofkens J
    J Am Chem Soc; 2007 Nov; 129(45):13970-7. PubMed ID: 17956094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and reversible photoswitching of the fluorescent protein dronpa as evidenced by fluorescence correlation spectroscopy.
    Dedecker P; Hotta J; Ando R; Miyawaki A; Engelborghs Y; Hofkens J
    Biophys J; 2006 Sep; 91(5):L45-7. PubMed ID: 16798811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching.
    Habuchi S; Dedecker P; Hotta J; Flors C; Ando R; Mizuno H; Miyawaki A; Hofkens J
    Photochem Photobiol Sci; 2006 Jun; 5(6):567-76. PubMed ID: 16761085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GMars-Q Enables Long-Term Live-Cell Parallelized Reversible Saturable Optical Fluorescence Transitions Nanoscopy.
    Wang S; Chen X; Chang L; Xue R; Duan H; Sun Y
    ACS Nano; 2016 Oct; 10(10):9136-9144. PubMed ID: 27541837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Super-sectioning with multi-sheet reversible saturable optical fluorescence transitions (RESOLFT) microscopy.
    Bodén A; Ollech D; York AG; Millett-Sikking A; Testa I
    Nat Methods; 2024 May; 21(5):882-888. PubMed ID: 38395993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoswitchable fluorescent nanoparticles: preparation, properties and applications.
    Tian Z; Wu W; Li AD
    Chemphyschem; 2009 Oct; 10(15):2577-91. PubMed ID: 19746389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data storage based on photochromic and photoconvertible fluorescent proteins.
    Adam V; Mizuno H; Grichine A; Hotta J; Yamagata Y; Moeyaert B; Nienhaus GU; Miyawaki A; Bourgeois D; Hofkens J
    J Biotechnol; 2010 Sep; 149(4):289-98. PubMed ID: 20416344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.