These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18724646)

  • 1. A critical review on the process of contaminant removal in Fe0-H2O systems.
    Noubactep C
    Environ Technol; 2008 Aug; 29(8):909-20. PubMed ID: 18724646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of the evolution of reactive species in Fe0/H2O systems.
    Noubactep C
    J Hazard Mater; 2009 Sep; 168(2-3):1626-31. PubMed ID: 19329247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the mechanism of clofibric acid removal in Fe(0)/H2O systems.
    Ghauch A; Abou Assi H; Tuqan A
    J Hazard Mater; 2010 Apr; 176(1-3):48-55. PubMed ID: 19944526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of gas production and entrapment in granular iron medium.
    Kamolpornwijit W; Liang L
    J Contam Hydrol; 2006 Jan; 82(3-4):338-56. PubMed ID: 16337024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On nanoscale metallic iron for groundwater remediation.
    Noubactep C; Caré S
    J Hazard Mater; 2010 Oct; 182(1-3):923-7. PubMed ID: 20594643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products.
    Manning BA; Hunt ML; Amrhein C; Yarmoff JA
    Environ Sci Technol; 2002 Dec; 36(24):5455-61. PubMed ID: 12521175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+.
    Huang YH; Zhang TC
    Water Res; 2005 May; 39(9):1751-60. PubMed ID: 15899273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrite reduction and formation of corrosion coatings in zerovalent iron systems.
    Huang YH; Zhang TC
    Chemosphere; 2006 Aug; 64(6):937-43. PubMed ID: 16488465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comments on "Sorption of triazoles to soil and iron minerals" by Y. Jia et al. [Chemosphere 67 (2007) 250-258].
    Noubactep C
    Chemosphere; 2008 Mar; 71(4):802-6. PubMed ID: 18177921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic iron for environmental remediation: learning from electrocoagulation.
    Noubactep C; Schöner A
    J Hazard Mater; 2010 Mar; 175(1-3):1075-80. PubMed ID: 19864056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the operating mode of bimetallic systems for environmental remediation.
    Noubactep C
    J Hazard Mater; 2009 May; 164(1):394-5. PubMed ID: 18801613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes.
    Fernandez-Sanchez JM; Sawvel EJ; Alvarez PJ
    Chemosphere; 2004 Feb; 54(7):823-9. PubMed ID: 14637339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comments on "Decontamination of solutions containing EDTA using metallic iron" by Gyliene O., et al. [J. Hazard. Mater. (2008)].
    Noubactep C
    J Hazard Mater; 2009 Jun; 165(1-3):1261-3. PubMed ID: 18930590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the validity of specific rate constants (kSA) in Fe0/H2O systems.
    Noubactep C
    J Hazard Mater; 2009 May; 164(2-3):835-7. PubMed ID: 18842338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM; Lam CS; Lai KC
    Water Res; 2006 Feb; 40(3):595-605. PubMed ID: 16406049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.
    Su C; Puls RW
    Environ Sci Technol; 2004 May; 38(9):2715-20. PubMed ID: 15180070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization and re-activation of a Fe0/Ti system for the reduction of aqueous Cr(VI).
    Liu J; Liu H; Wang C; Li X; Tong Y; Xuan X; Cui G
    J Hazard Mater; 2008 Mar; 151(2-3):761-9. PubMed ID: 17658687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron.
    Tratnyek PG; Scherer MM; Deng B; Hu S
    Water Res; 2001 Dec; 35(18):4435-43. PubMed ID: 11763046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.