BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18724743)

  • 1. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?
    McIntyre PB; Flecker AS; Vanni MJ; Hood JM; Taylor BW; Thomas SA
    Ecology; 2008 Aug; 89(8):2335-46. PubMed ID: 18724743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient neotropical streams.
    Small GE; Pringle CM; Pyron M; Duff JH
    Ecology; 2011 Feb; 92(2):386-97. PubMed ID: 21618918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass distribution of fishes and mussels mediates spatial and temporal heterogeneity in nutrient cycling in streams.
    Hopper GW; Gido KB; Vaughn CC; Parr TB; Popejoy TG; Atkinson CL; Gates KK
    Oecologia; 2018 Dec; 188(4):1133-1144. PubMed ID: 30343403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system.
    Capps KA; Flecker AS
    PLoS One; 2013; 8(1):e54093. PubMed ID: 23342083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonnative fish stocking alters stream ecosystem nutrient dynamics.
    Alexiades AV; Flecker AS; Kraft CE
    Ecol Appl; 2017 Apr; 27(3):956-965. PubMed ID: 28054408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth.
    Hood JM; Vanni MJ; Flecker AS
    Oecologia; 2005 Dec; 146(2):247-57. PubMed ID: 16133197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics.
    Atkinson CL; Vaughn CC; Forshay KJ; Cooper JT
    Ecology; 2013 Jun; 94(6):1359-69. PubMed ID: 23923499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of an invasive snail (Tarebia granifera) on nutrient cycling in tropical streams: the role of riparian deforestation in Trinidad, West Indies.
    Moslemi JM; Snider SB; Macneill K; Gilliam JF; Flecker AS
    PLoS One; 2012; 7(6):e38806. PubMed ID: 22761706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consumption explains intraspecific variation in nutrient recycling stoichiometry in a desert fish.
    Moody EK; Carson EW; Corman JR; Espinosa-Pérez H; Ramos J; Sabo JL; Elser JJ
    Ecology; 2018 Jul; 99(7):1552-1561. PubMed ID: 29882955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predator-driven nutrient recycling in California stream ecosystems.
    Munshaw RG; Palen WJ; Courcelles DM; Finlay JC
    PLoS One; 2013; 8(3):e58542. PubMed ID: 23520520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community.
    Oliveira-Cunha P; McIntyre PB; Neres-Lima V; Caliman A; Moreira-Ferreira B; Zandonà E
    Sci Rep; 2022 Sep; 12(1):14844. PubMed ID: 36050417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fish extinctions alter nutrient recycling in tropical freshwaters.
    McIntyre PB; Jones LE; Flecker AS; Vanni MJ
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4461-6. PubMed ID: 17360546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis.
    Vanni MJ; McIntyre PB
    Ecology; 2016 Dec; 97(12):3460-3471. PubMed ID: 27912023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.
    Hood JM; Benstead JP; Cross WF; Huryn AD; Johnson PW; Gíslason GM; Junker JR; Nelson D; Ólafsson JS; Tran C
    Glob Chang Biol; 2018 Mar; 24(3):1069-1084. PubMed ID: 28922515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warming alters coupled carbon and nutrient cycles in experimental streams.
    Williamson TJ; Cross WF; Benstead JP; Gíslason GM; Hood JM; Huryn AD; Johnson PW; Welter JR
    Glob Chang Biol; 2016 Jun; 22(6):2152-64. PubMed ID: 26719040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parasite infection alters nitrogen cycling at the ecosystem scale.
    Mischler J; Johnson PT; McKenzie VJ; Townsend AR
    J Anim Ecol; 2016 May; 85(3):817-28. PubMed ID: 26919319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.
    Atkinson CL; Capps KA; Rugenski AT; Vanni MJ
    Biol Rev Camb Philos Soc; 2017 Nov; 92(4):2003-2023. PubMed ID: 28008706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thresholds of ecosystem response to nutrient enrichment from fish aggregations.
    Layman CA; Allgeier JE; Yeager LA; Stoner EW
    Ecology; 2013 Feb; 94(2):530-6. PubMed ID: 23691671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic support for increased primary production around artificial reefs.
    Esquivel KE; Hesselbarth MHK; Allgeier JE
    Ecol Appl; 2022 Sep; 32(6):e2617. PubMed ID: 35368128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine fisheries declines viewed upside down: human impacts on consumer-driven nutrient recycling.
    Layman CA; Allgeier JE; Rosemond AD; Dahlgren CP; Yeager LA
    Ecol Appl; 2011 Mar; 21(2):343-9. PubMed ID: 21563567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.