These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1872512)

  • 21. Characteristics of late responses to superior laryngeal nerve stimulation in humans.
    Ludlow CL; Van Pelt F; Koda J
    Ann Otol Rhinol Laryngol; 1992 Feb; 101(2 Pt 1):127-34. PubMed ID: 1739256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elastic models of vocal fold tissues.
    Alipour-Haghighi F; Titze IR
    J Acoust Soc Am; 1991 Sep; 90(3):1326-31. PubMed ID: 1939897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isometric twitch and tetanic contraction of frog skeletal muscles at temperatures between 0 to 30 degrees C.
    Kössler F; Lange F; Küchler G
    Biomed Biochim Acta; 1987; 46(11):809-13. PubMed ID: 3502248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pacing parameters of the canine posterior cricoarytenoid muscle.
    Kano S; Sasaki CT
    Ann Otol Rhinol Laryngol; 1991 Jul; 100(7):584-8. PubMed ID: 2064273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Function of the thyroarytenoid muscle in a canine laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):769-76. PubMed ID: 8215096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of magnetic field on the biomechanics parameters of soleus and extensor digitorum longus muscles in rats with streptozotocin-induced diabetes.
    Pelit A; Ozaykan B; Tuli A; Demirkazik A; Emre M; Günay I
    Diabetes Technol Ther; 2008 Aug; 10(4):294-8. PubMed ID: 18715203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of vocal fold cover stiffness by laryngeal muscles: a preliminary study.
    Chhetri DK; Berke GS; Lotfizadeh A; Goodyer E
    Laryngoscope; 2009 Jan; 119(1):222-7. PubMed ID: 19117308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion.
    Dobson JL; Gladden LB
    J Appl Physiol (1985); 2003 Jan; 94(1):11-9. PubMed ID: 12391133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of the interarytenoid muscle in a canine laryngeal model.
    Nasri S; Beizai P; Sercarz JA; Kreiman J; Graves MC; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Dec; 103(12):975-82. PubMed ID: 7993010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contractile properties of canine thyroarytenoid muscle reinnervated from the ansa cervicalis.
    Rice DH; Cooper DS
    Ann Otol Rhinol Laryngol; 1989 Feb; 98(2):153-6. PubMed ID: 2916827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in isometric force of mouse soleus muscle during the oestrous cycle.
    McGoldrick T; Phillips SK; Bruce SA; Woledge RC
    Pflugers Arch; 1998 Dec; 437(1):70-3. PubMed ID: 9817788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles.
    Deletis V; Fernández-Conejero I; Ulkatan S; Rogić M; Carbó EL; Hiltzik D
    Clin Neurophysiol; 2011 Sep; 122(9):1883-9. PubMed ID: 21440494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Otolaryngol Head Neck Surg; 1993 Dec; 109(6):1043-51. PubMed ID: 8265188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excitability of contralateral and ipsilateral projections of corticobulbar pathways recorded as corticobulbar motor evoked potentials of the cricothyroid muscles.
    Rogić Vidaković M; Schönwald MZ; Rotim K; Jurić T; Vulević Z; Tafra R; Banožić A; Hamata Ž; Đogaš Z
    Clin Neurophysiol; 2015 Aug; 126(8):1570-7. PubMed ID: 25481338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On simulating sustained isometric muscle fatigue: a phenomenological model considering different fiber metabolisms.
    Grasa J; Sierra M; Muñoz MJ; Soteras F; Osta R; Calvo B; Miana-Mena FJ
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1373-85. PubMed ID: 24706095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Influence of tenotomy on posttetanic responses of the rat fast and slow muscle].
    Arutiunian RS; Zhabko EP
    Ross Fiziol Zh Im I M Sechenova; 2011 Aug; 97(8):781-94. PubMed ID: 21961302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cricothyroid distance and vocal pitch. Experimental surgical study to elevate the vocal pitch.
    Kitajima K; Tanabe M; Isshiki N
    Ann Otol Rhinol Laryngol; 1979; 88(1 Pt 1):52-5. PubMed ID: 426446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical and contractile parameters of muscle in man: effects of 7-day "dry" water immersion.
    Koryak Y
    Aviat Space Environ Med; 1999 May; 70(5):459-64. PubMed ID: 10332940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.