These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 18725329)
1. Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Aktas DF; Cook PF Biochim Biophys Acta; 2008 Dec; 1784(12):2059-64. PubMed ID: 18725329 [TBL] [Abstract][Full Text] [Related]
2. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum. Karsten WE; Cook PF Biochemistry; 2007 Dec; 46(50):14578-88. PubMed ID: 18027982 [TBL] [Abstract][Full Text] [Related]
3. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction. Aktas DF; Cook PF Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074 [TBL] [Abstract][Full Text] [Related]
4. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
5. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites. Karsten WE; Pais JE; Rao GS; Harris BG; Cook PF Biochemistry; 2003 Aug; 42(32):9712-21. PubMed ID: 12911313 [TBL] [Abstract][Full Text] [Related]
6. Mapping the active site topography of the NAD-malic enzyme via alanine-scanning site-directed mutagenesis. Karsten WE; Chooback L; Liu D; Hwang CC; Lynch C; Cook PF Biochemistry; 1999 Aug; 38(32):10527-32. PubMed ID: 10441149 [TBL] [Abstract][Full Text] [Related]
7. Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site. Rao GS; Coleman DE; Karsten WE; Cook PF; Harris BG J Biol Chem; 2003 Sep; 278(39):38051-8. PubMed ID: 12853453 [TBL] [Abstract][Full Text] [Related]
8. Lysine 199 is the general acid in the NAD-malic enzyme reaction. Liu D; Karsten WE; Cook PF Biochemistry; 2000 Oct; 39(39):11955-60. PubMed ID: 11009609 [TBL] [Abstract][Full Text] [Related]
9. Determinants of the dual cofactor specificity and substrate cooperativity of the human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of glutamine 362. Hsieh JY; Liu GY; Chang GG; Hung HC J Biol Chem; 2006 Aug; 281(32):23237-45. PubMed ID: 16757477 [TBL] [Abstract][Full Text] [Related]
10. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Karsten WE; Hwang CC; Cook PF Biochemistry; 1999 Apr; 38(14):4398-402. PubMed ID: 10194359 [TBL] [Abstract][Full Text] [Related]
11. Determinants of nucleotide-binding selectivity of malic enzyme. Hsieh JY; Chen MC; Hung HC PLoS One; 2011; 6(9):e25312. PubMed ID: 21980421 [TBL] [Abstract][Full Text] [Related]
12. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme. Hsieh JY; Liu JH; Fang YW; Hung HC Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308 [TBL] [Abstract][Full Text] [Related]
13. Engineering of the cofactor specificities and isoform-specific inhibition of malic enzyme. Hsieh JY; Hung HC J Biol Chem; 2009 Feb; 284(7):4536-44. PubMed ID: 19091740 [TBL] [Abstract][Full Text] [Related]
14. Expression, purification, and characterization of the recombinant NAD-malic enzyme from Ascaris suum. Chooback L; Karsten WE; Kulkarni G; Nalabolu SR; Harris BG; Cook PF Protein Expr Purif; 1997 Jun; 10(1):51-4. PubMed ID: 9179290 [TBL] [Abstract][Full Text] [Related]
15. Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of the nucleotide binding site Lys346. Hsieh JY; Liu GY; Hung HC FEBS J; 2008 Nov; 275(21):5383-92. PubMed ID: 18959763 [TBL] [Abstract][Full Text] [Related]
16. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme. Hung HC; Chien YC; Hsieh JY; Chang GG; Liu GY Biochemistry; 2005 Sep; 44(38):12737-45. PubMed ID: 16171388 [TBL] [Abstract][Full Text] [Related]
17. Critical residues for the coenzyme specificity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Cho H; Oliveira MA; Tai HH Arch Biochem Biophys; 2003 Nov; 419(2):139-46. PubMed ID: 14592457 [TBL] [Abstract][Full Text] [Related]
18. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum. Karsten WE; Gavva SR; Park SH; Cook PF Biochemistry; 1995 Mar; 34(10):3253-60. PubMed ID: 7880820 [TBL] [Abstract][Full Text] [Related]
19. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme. Park SH; Harris BG; Cook PF Biochemistry; 1986 Jul; 25(13):3752-9. PubMed ID: 3741834 [TBL] [Abstract][Full Text] [Related]
20. Role of the divalent metal ion in the NAD:malic enzyme reaction: an ESEEM determination of the ground state conformation of malate in the E:Mn:malate complex. Tipton PA; Quinn TP; Peisach J; Cook PF Protein Sci; 1996 Aug; 5(8):1648-54. PubMed ID: 8844853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]