These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18725530)

  • 1. Preventing voltage-dependent gating of anthrax toxin channels using engineered disulfides.
    Anderson DS; Blaustein RO
    J Gen Physiol; 2008 Sep; 132(3):351-60. PubMed ID: 18725530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.
    Jacquez P; Avila G; Boone K; Altiyev A; Puschhof J; Sauter R; Arigi E; Ruiz B; Peng X; Almeida I; Sherman M; Xiao C; Sun J
    PLoS One; 2015; 10(6):e0130832. PubMed ID: 26107617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PA63 channel of anthrax toxin: an extended beta-barrel.
    Nassi S; Collier RJ; Finkelstein A
    Biochemistry; 2002 Feb; 41(5):1445-50. PubMed ID: 11814336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of residues lining the anthrax protective antigen channel.
    Benson EL; Huynh PD; Finkelstein A; Collier RJ
    Biochemistry; 1998 Mar; 37(11):3941-8. PubMed ID: 9521715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein translocation through anthrax toxin channels formed in planar lipid bilayers.
    Zhang S; Udho E; Wu Z; Collier RJ; Finkelstein A
    Biophys J; 2004 Dec; 87(6):3842-9. PubMed ID: 15377524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function.
    Sun J; Collier RJ
    PLoS One; 2010 May; 5(5):e10553. PubMed ID: 20479891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthrax toxin protective antigen: inhibition of channel function by chloroquine and related compounds and study of binding kinetics using the current noise analysis.
    Orlik F; Schiffler B; Benz R
    Biophys J; 2005 Mar; 88(3):1715-24. PubMed ID: 15596516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation.
    Lacy DB; Wigelsworth DJ; Melnyk RA; Harrison SC; Collier RJ
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13147-51. PubMed ID: 15326297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthrax edema factor, voltage-dependent binding to the protective antigen ion channel and comparison to LF binding.
    Neumeyer T; Tonello F; Dal Molin F; Schiffler B; Benz R
    J Biol Chem; 2006 Oct; 281(43):32335-43. PubMed ID: 16954207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion of anthrax protective antigen into liposomal membranes: effects of a receptor.
    Sun J; Vernier G; Wigelsworth DJ; Collier RJ
    J Biol Chem; 2007 Jan; 282(2):1059-65. PubMed ID: 17107945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion selectivity of the anthrax toxin channel and its effect on protein translocation.
    Schiffmiller A; Anderson D; Finkelstein A
    J Gen Physiol; 2015 Aug; 146(2):183-92. PubMed ID: 26170174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The channel formed in planar lipid bilayers by the protective antigen component of anthrax toxin.
    Finkelstein A
    Toxicology; 1994 Feb; 87(1-3):29-41. PubMed ID: 7512762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthrax protective antigen: prepore-to-pore conversion.
    Miller CJ; Elliott JL; Collier RJ
    Biochemistry; 1999 Aug; 38(32):10432-41. PubMed ID: 10441138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubilization and characterization of the anthrax toxin pore in detergent micelles.
    Vernier G; Wang J; Jennings LD; Sun J; Fischer A; Song L; Collier RJ
    Protein Sci; 2009 Sep; 18(9):1882-95. PubMed ID: 19609933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of N-terminal fragments of anthrax edema factor (EF(N)) and lethal factor (LF(N)) to the protective antigen pore.
    Leuber M; Kronhardt A; Tonello F; Dal Molin F; Benz R
    Biochim Biophys Acta; 2008 Jun; 1778(6):1436-43. PubMed ID: 18243126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes.
    Masson L; Schwab G; Mazza A; Brousseau R; Potvin L; Schwartz JL
    Biochemistry; 2004 Sep; 43(38):12349-57. PubMed ID: 15379574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions of phenylalanine residues within the beta-barrel stem of the anthrax toxin pore.
    Wang J; Vernier G; Fischer A; Collier RJ
    PLoS One; 2009 Jul; 4(7):e6280. PubMed ID: 19609431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cys-Cys cross-linking shows contact between the N-terminus of lethal factor and Phe427 of the anthrax toxin pore.
    Janowiak BE; Jennings-Antipov LD; Collier RJ
    Biochemistry; 2011 May; 50(17):3512-6. PubMed ID: 21425869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.