These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18725645)

  • 1. Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR.
    Klein JC; Burr AR; Svensson B; Kennedy DJ; Allingham J; Titus MA; Rayment I; Thomas DD
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12867-72. PubMed ID: 18725645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformationally trapping the actin-binding cleft of myosin with a bifunctional spin label.
    Moen RJ; Thomas DD; Klein JC
    J Biol Chem; 2013 Feb; 288(5):3016-24. PubMed ID: 23250750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dynamics of the actin-myosin interface by site-directed spectroscopy.
    Korman VL; Anderson SE; Prochniewicz E; Titus MA; Thomas DD
    J Mol Biol; 2006 Mar; 356(5):1107-17. PubMed ID: 16406406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining EPR with fluorescence spectroscopy to monitor conformational changes at the myosin nucleotide pocket.
    Naber N; Málnási-Csizmadia A; Purcell TJ; Cooke R; Pate E
    J Mol Biol; 2010 Mar; 396(4):937-48. PubMed ID: 20036250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional impact of site-directed methionine oxidation in myosin.
    Klein JC; Moen RJ; Smith EA; Titus MA; Thomas DD
    Biochemistry; 2011 Nov; 50(47):10318-27. PubMed ID: 21988699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain.
    Muretta JM; Petersen KJ; Thomas DD
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7211-6. PubMed ID: 23589853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution helix orientation in actin-bound myosin determined with a bifunctional spin label.
    Binder BP; Cornea S; Thompson AR; Moen RJ; Thomas DD
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):7972-7. PubMed ID: 26056276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic Models from Orientation and Distance Constraints Using EPR of a Bifunctional Spin Label.
    Binder BP; Thompson AR; Thomas DD
    Biophys J; 2019 Jul; 117(2):319-330. PubMed ID: 31301803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dictyostelium myosin II as a model to study the actin-myosin interactions during force generation.
    Sasaki N; Ohkura R; Sutoh K
    J Muscle Res Cell Motil; 2002; 23(7-8):697-702. PubMed ID: 12952068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle and nonmuscle myosins probed by a spin label at equivalent sites in the force-generating domain.
    Agafonov RV; Nesmelov YE; Titus MA; Thomas DD
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13397-402. PubMed ID: 18765799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments.
    Cochran JC; Thompson ME; Kull FJ
    J Biol Chem; 2013 Sep; 288(39):28312-23. PubMed ID: 23960071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPR spectra and molecular dynamics agree that the nucleotide pocket of myosin V is closed and that it opens on binding actin.
    Purcell TJ; Naber N; Sutton S; Cooke R; Pate E
    J Mol Biol; 2011 Aug; 411(1):16-26. PubMed ID: 21640122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric communication in Dictyostelium myosin II.
    Guhathakurta P; Prochniewicz E; Muretta JM; Titus MA; Thomas DD
    J Muscle Res Cell Motil; 2012 Oct; 33(5):305-12. PubMed ID: 22752265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ATP and actin-filament binding on the dynamics of the myosin II S1 domain.
    Baker JL; Voth GA
    Biophys J; 2013 Oct; 105(7):1624-34. PubMed ID: 24094403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural rearrangements in the active site of smooth-muscle myosin.
    Robertson CI; Gaffney DP; Chrin LR; Berger CL
    Biophys J; 2005 Sep; 89(3):1882-92. PubMed ID: 15951390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acids 519-524 of Dictyostelium myosin II form a surface loop that aids actin binding by facilitating a conformational change.
    Uyeda TQ; Patterson B; Mendoza L; Hiratsuka Y
    J Muscle Res Cell Motil; 2002; 23(7-8):685-95. PubMed ID: 12952067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Conserved Lysine-265 Allosterically Modulates Nucleotide- and Actin-binding Site Coupling in Myosin-2.
    Behrens VA; Münnich S; Adler-Gunzelmann G; Thiel C; Henn A; Latham SL; Taft MH
    Sci Rep; 2017 Aug; 7(1):7650. PubMed ID: 28794442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution of three structural states of spin-labeled myosin in contracting muscle.
    Ostap EM; Barnett VA; Thomas DD
    Biophys J; 1995 Jul; 69(1):177-88. PubMed ID: 7669895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The myosin start-of-power stroke state and how actin binding drives the power stroke.
    Preller M; Holmes KC
    Cytoskeleton (Hoboken); 2013 Oct; 70(10):651-60. PubMed ID: 23852739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin cleft movement and its coupling to actomyosin dissociation.
    Conibear PB; Bagshaw CR; Fajer PG; Kovács M; Málnási-Csizmadia A
    Nat Struct Biol; 2003 Oct; 10(10):831-5. PubMed ID: 14502269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.