These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 18725695)

  • 21. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications.
    Fang L; Leng Y; Gao P
    Biomaterials; 2005 Jun; 26(17):3471-8. PubMed ID: 15621236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel ultra high molecular weight polyethylene-hyaluronan microcomposite for use in total joint replacements. I. Synthesis and physical/chemical characterization.
    Zhang M; King R; Hanes M; James SP
    J Biomed Mater Res A; 2006 Jul; 78(1):86-96. PubMed ID: 16602125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.
    Kurtz SM; Mazzucco D; Rimnac CM; Schroeder D
    Biomaterials; 2006 Jan; 27(1):24-34. PubMed ID: 16085308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isoelastic distal ulnar head prosthesis: an in vitro joint simulator study.
    Naidu SH; Radin A
    J Hand Surg Am; 2009 Mar; 34(3):409-14. PubMed ID: 19258137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
    Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2008 Nov; 4(6):1715-24. PubMed ID: 18583207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of compression-molded UHMWPE, PMMA and PMMA/MMA treated UHMWPE: density measurement, FTIR-ATR, and DSC.
    Park KD; Khang GS; Lee HB; Park JB
    Biomed Mater Eng; 2001; 11(4):311-23. PubMed ID: 11790863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microscopic destruction of ultra-high molecular weight polyethylene (UHMWPE) under uniaxial tension.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):47-57. PubMed ID: 12652022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of IPN surface modification on the mechanical properties of UHMWPE.
    Zhang M; James SP; Rentfrow E
    Biomed Sci Instrum; 2001; 37():7-12. PubMed ID: 11347448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient elastohydrodynamic lubrication analysis of metal-on-metal hip implant under simulated walking conditions.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    J Biomech; 2006; 39(5):905-14. PubMed ID: 16199048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.
    Lai KL; Roziyanna A; Ogunniyi DS; Zainal AM; Azlan AA
    Med J Malaysia; 2004 May; 59 Suppl B():61-2. PubMed ID: 15468819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanical properties of the ultra high molecular weight polyethylene grafted with 3-dimethy (3-(N-methacryamido) propyl) ammonium propane sulfonate.
    Deng Y; Xiong D; Wang K
    J Mech Behav Biomed Mater; 2014 Jul; 35():18-26. PubMed ID: 24727573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclic compressive loading results in fatigue cracks in ultra high molecular weight polyethylene.
    Pruitt L; Koo J; Rimnac CM; Suresh S; Wright TM
    J Orthop Res; 1995 Jan; 13(1):143-6. PubMed ID: 7853097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide.
    Chang MC; Kim UK; Douglas WH
    J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Friction, wear, and tensile properties of vacuum hot pressing crosslinked UHMWPE/nano-HAP composites.
    Xiong L; Xiong D; Yang Y; Jin J
    J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):127-38. PubMed ID: 21598380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.
    Xu L; Chen C; Zhong GJ; Lei J; Xu JZ; Hsiao BS; Li ZM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1521-9. PubMed ID: 22339721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties.
    Kashiwazaki H; Kishiya Y; Matsuda A; Yamaguchi K; Iizuka T; Tanaka J; Inoue N
    Biomed Mater Eng; 2009; 19(2-3):133-40. PubMed ID: 19581706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniaxial and biaxial ratcheting behavior of ultra-high molecular weight polyethylene.
    Gao H; Wang J; Li F; Gao L; Zhang Z
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():295-306. PubMed ID: 29752101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The integrity of welded interfaces in ultra-high molecular weight polyethylene: Part 2--interface toughness.
    Haughie DW; Buckley CP; Wu J
    Biomaterials; 2006 Jul; 27(21):3875-81. PubMed ID: 16574221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity.
    Kanaga Karuppiah KS; Bruck AL; Sundararajan S; Wang J; Lin Z; Xu ZH; Li X
    Acta Biomater; 2008 Sep; 4(5):1401-10. PubMed ID: 18378200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.