These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 18725978)

  • 1. CHEK2 mutations affecting kinase activity together with mutations in TP53 indicate a functional pathway associated with resistance to epirubicin in primary breast cancer.
    Chrisanthar R; Knappskog S; Løkkevik E; Anker G; Østenstad B; Lundgren S; Berge EO; Risberg T; Mjaaland I; Maehle L; Engebretsen LF; Lillehaug JR; Lønning PE
    PLoS One; 2008 Aug; 3(8):e3062. PubMed ID: 18725978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.
    Knappskog S; Chrisanthar R; Løkkevik E; Anker G; Østenstad B; Lundgren S; Risberg T; Mjaaland I; Leirvaag B; Miletic H; Lønning PE
    Breast Cancer Res; 2012 Mar; 14(2):R47. PubMed ID: 22420423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel.
    Chrisanthar R; Knappskog S; Løkkevik E; Anker G; Ostenstad B; Lundgren S; Risberg T; Mjaaland I; Skjønsberg G; Aas T; Schlichting E; Fjösne HE; Nysted A; Lillehaug JR; Lønning PE
    PLoS One; 2011 Apr; 6(4):e19249. PubMed ID: 21556366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer.
    Geisler S; Lønning PE; Aas T; Johnsen H; Fluge O; Haugen DF; Lillehaug JR; Akslen LA; Børresen-Dale AL
    Cancer Res; 2001 Mar; 61(6):2505-12. PubMed ID: 11289122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concomitant inactivation of the p53- and pRB- functional pathways predicts resistance to DNA damaging drugs in breast cancer in vivo.
    Knappskog S; Berge EO; Chrisanthar R; Geisler S; Staalesen V; Leirvaag B; Yndestad S; de Faveri E; Karlsen BO; Wedge DC; Akslen LA; Lilleng PK; Løkkevik E; Lundgren S; Østenstad B; Risberg T; Mjaaland I; Aas T; Lønning PE
    Mol Oncol; 2015 Oct; 9(8):1553-64. PubMed ID: 26004085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer.
    Walsh T; Casadei S; Coats KH; Swisher E; Stray SM; Higgins J; Roach KC; Mandell J; Lee MK; Ciernikova S; Foretova L; Soucek P; King MC
    JAMA; 2006 Mar; 295(12):1379-88. PubMed ID: 16551709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterisation of p53 mutants identified in breast cancers with suboptimal responses to anthracyclines or mitomycin.
    Berge EO; Huun J; Lillehaug JR; Lønning PE; Knappskog S
    Biochim Biophys Acta; 2013 Mar; 1830(3):2790-7. PubMed ID: 23246812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P53 and its molecular basis to chemoresistance in breast cancer.
    Knappskog S; Lønning PE
    Expert Opin Ther Targets; 2012 Mar; 16 Suppl 1():S23-30. PubMed ID: 22313396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation profile of TP53 regulatory pathway and mtDNA alterations in breast cancer patients lacking TP53 mutations.
    Barekati Z; Radpour R; Kohler C; Zhang B; Toniolo P; Lenner P; Lv Q; Zheng H; Zhong XY
    Hum Mol Genet; 2010 Aug; 19(15):2936-46. PubMed ID: 20466735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the INK4a/ARF locus and p53 in sporadic extrahepatic bile duct cancers and bile tract cancer cell lines.
    Caca K; Feisthammel J; Klee K; Tannapfel A; Witzigmann H; Wittekind C; Mössner J; Berr F
    Int J Cancer; 2002 Feb; 97(4):481-8. PubMed ID: 11802210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRCA1, TP53, and CHEK2 germline mutations in uterine serous carcinoma.
    Pennington KP; Walsh T; Lee M; Pennil C; Novetsky AP; Agnew KJ; Thornton A; Garcia R; Mutch D; King MC; Goodfellow P; Swisher EM
    Cancer; 2013 Jan; 119(2):332-8. PubMed ID: 22811390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wip1 over-expression correlated with TP53/p14(ARF) pathway disruption in human astrocytomas.
    Wang P; Rao J; Yang H; Zhao H; Yang L
    J Surg Oncol; 2011 Nov; 104(6):679-84. PubMed ID: 21695702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas.
    Tannapfel A; Busse C; Weinans L; Benicke M; Katalinic A; Geissler F; Hauss J; Wittekind C
    Oncogene; 2001 Oct; 20(48):7104-9. PubMed ID: 11704835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique substitution of CHEK2 and TP53 mutations implicated in primary prostate tumors and cancer cell lines.
    Zheng L; Wang F; Qian C; Neumann RM; Cheville JC; Tindall DJ; Liu W
    Hum Mutat; 2006 Oct; 27(10):1062-3. PubMed ID: 16941491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of TP53 and alteration of p14(arf) expression in EGFR- and KRAS-mutated lung adenocarcinomas.
    Cortot AB; Younes M; Martel-Planche G; Guibert B; Isaac S; Souquet PJ; Commo F; Girard P; Fouret P; Brambilla E; Hainaut P; Soria JC
    Clin Lung Cancer; 2014 Mar; 15(2):124-30. PubMed ID: 24169260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen.
    Bertheau P; Turpin E; Rickman DS; Espié M; de Reyniès A; Feugeas JP; Plassa LF; Soliman H; Varna M; de Roquancourt A; Lehmann-Che J; Beuzard Y; Marty M; Misset JL; Janin A; de Thé H
    PLoS Med; 2007 Mar; 4(3):e90. PubMed ID: 17388661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast cancer genomes from CHEK2 c.1100delC mutation carriers lack somatic TP53 mutations and display a unique structural variant size distribution profile.
    Smid M; Schmidt MK; Prager-van der Smissen WJC; Ruigrok-Ritstier K; Schreurs MAC; Cornelissen S; Garcia AM; Broeks A; Timmermans AM; Trapman-Jansen AMAC; Collée JM; Adank MA; Hooning MJ; Martens JWM; Hollestelle A
    Breast Cancer Res; 2023 May; 25(1):53. PubMed ID: 37161532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 14-3-3σ expression is associated with poor pathological complete response to neoadjuvant chemotherapy in human breast cancers.
    Nakamura Y; Oshima K; Naoi Y; Nakayama T; Kim SJ; Shimazu K; Shimomura A; Maruyama N; Tamaki Y; Noguchi S
    Breast Cancer Res Treat; 2012 Jul; 134(1):229-36. PubMed ID: 22315133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deleterious CHEK2 1100delC and L303X mutants identified among 38 human breast cancer cell lines.
    Wasielewski M; Hanifi-Moghaddam P; Hollestelle A; Merajver SD; van den Ouweland A; Klijn JG; Ethier SP; Schutte M
    Breast Cancer Res Treat; 2009 Jan; 113(2):285-91. PubMed ID: 18297428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHEK2 gene alterations independently increase the risk of death from breast cancer in Bulgarian patients.
    Angelova SG; Krasteva ME; Gospodinova ZI; Georgieva EI
    Neoplasma; 2012; 59(6):622-30. PubMed ID: 22862163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.