BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18725996)

  • 21. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.
    Lin CF; Zhu JD
    Proc Inst Mech Eng H; 2012 Mar; 226(3):208-16. PubMed ID: 22558835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The upper frequency limit of dynamic cerebral autoregulation.
    Panerai RB; Robinson TG; Minhas JS
    J Physiol; 2019 Dec; 597(24):5821-5833. PubMed ID: 31671473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lack of linear correlation between dynamic and steady-state cerebral autoregulation.
    de Jong DLK; Tarumi T; Liu J; Zhang R; Claassen JAHR
    J Physiol; 2017 Aug; 595(16):5623-5636. PubMed ID: 28597991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wavelet decomposition analysis is a clinically relevant strategy to evaluate cerebrovascular buffering of blood pressure after spinal cord injury.
    Saleem S; Vucina D; Sarafis Z; Lee AHX; Squair JW; Barak OF; Coombs GB; Mijacika T; Krassioukov AV; Ainslie PN; Dujic Z; Tzeng YC; Phillips AA
    Am J Physiol Heart Circ Physiol; 2018 May; 314(5):H1108-H1114. PubMed ID: 29600896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of valsartan versus non-RAAS treatment on autoregulation of cerebral blood flow.
    Périard D; Rey MA; Casagrande D; Vesin JM; Carrera E; Hayoz D
    Cerebrovasc Dis; 2012; 34(1):78-85. PubMed ID: 22814178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelet pressure reactivity index: a validation study.
    Liu X; Czosnyka M; Donnelly J; Cardim D; Cabeleira M; Hutchinson PJ; Hu X; Smielewski P; Brady K
    J Physiol; 2018 Jul; 596(14):2797-2809. PubMed ID: 29665012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of cerebral autoregulation from ectopic heartbeats.
    Eames PJ; Potter JF; Panerai RB
    Clin Sci (Lond); 2005 Jul; 109(1):109-15. PubMed ID: 15773816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does stroke subtype and measurement technique influence estimation of cerebral autoregulation in acute ischaemic stroke?
    Saeed NP; Panerai RB; Horsfield MA; Robinson TG
    Cerebrovasc Dis; 2013; 35(3):257-61. PubMed ID: 23548789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative representation of neural activation in multivariate models of neurovascular coupling in humans.
    Panerai RB; Hanby MF; Robinson TG; Haunton VJ
    J Neurophysiol; 2019 Aug; 122(2):833-843. PubMed ID: 31242062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
    Hetzel A; Braune S; Guschlbauer B; Dohms K; Prasse A; Lücking CH
    J Neuroimaging; 1999 Apr; 9(2):108-12. PubMed ID: 10208109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic cerebral autoregulation during repeated squat-stand maneuvers.
    Claassen JA; Levine BD; Zhang R
    J Appl Physiol (1985); 2009 Jan; 106(1):153-60. PubMed ID: 18974368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Valsalva maneuver suggests increased rigidity of cerebral resistance vessels in familial dysautonomia.
    Hilz MJ; Axelrod FB; Steingrueber M; Stemper B
    Clin Auton Res; 2002 Oct; 12(5):385-92. PubMed ID: 12420084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered cerebral vasoregulation in hypertension and stroke.
    Novak V; Chowdhary A; Farrar B; Nagaraja H; Braun J; Kanard R; Novak P; Slivka A
    Neurology; 2003 May; 60(10):1657-63. PubMed ID: 12771258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental changes in cerebral and visceral blood flow velocity in healthy neonates and infants.
    Ilves P; Lintrop M; Talvik I; Muug K; Asser K; Veinla M
    J Ultrasound Med; 2008 Feb; 27(2):199-207. PubMed ID: 18204010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonstationarity of dynamic cerebral autoregulation.
    Panerai RB
    Med Eng Phys; 2014 May; 36(5):576-84. PubMed ID: 24113077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impaired cerebral autoregulation: measurement and application to stroke.
    Xiong L; Liu X; Shang T; Smielewski P; Donnelly J; Guo ZN; Yang Y; Leung T; Czosnyka M; Zhang R; Liu J; Wong KS
    J Neurol Neurosurg Psychiatry; 2017 Jun; 88(6):520-531. PubMed ID: 28536207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study.
    Meel-van den Abeelen AS; Simpson DM; Wang LJ; Slump CH; Zhang R; Tarumi T; Rickards CA; Payne S; Mitsis GD; Kostoglou K; Marmarelis V; Shin D; Tzeng YC; Ainslie PN; Gommer E; Müller M; Dorado AC; Smielewski P; Yelicich B; Puppo C; Liu X; Czosnyka M; Wang CY; Novak V; Panerai RB; Claassen JA
    Med Eng Phys; 2014 May; 36(5):620-7. PubMed ID: 24725709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers.
    Panerai RB; Barnes SC; Nath M; Ball N; Robinson TG; Haunton VJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R730-R740. PubMed ID: 29975567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility.
    Gommer ED; Shijaku E; Mess WH; Reulen JP
    Med Biol Eng Comput; 2010 Dec; 48(12):1243-50. PubMed ID: 21049290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic cerebral autoregulation during cognitive task: effect of hypoxia.
    Ogoh S; Nakata H; Miyamoto T; Bailey DM; Shibasaki M
    J Appl Physiol (1985); 2018 Jun; 124(6):1413-1419. PubMed ID: 29420157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.