These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. Zeng W; Ghosh S; Lau YF; Brown LE; Jackson DC J Immunol; 2002 Nov; 169(9):4905-12. PubMed ID: 12391202 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, Characterization and Immunological Evaluation of Self-Adjuvanting Group A Streptococcal Vaccine Candidates Bearing Various Lipidic Adjuvanting Moieties. Fagan V; Hussein WM; Su M; Giddam AK; Batzloff MR; Good MF; Toth I; Simerska P Chembiochem; 2017 Mar; 18(6):545-553. PubMed ID: 28075053 [TBL] [Abstract][Full Text] [Related]
9. Method for the synthesis of highly pure vaccines using the lipid core peptide system. Moyle PM; Olive C; Good MF; Toth I J Pept Sci; 2006 Dec; 12(12):800-7. PubMed ID: 17131293 [TBL] [Abstract][Full Text] [Related]
10. Design of fully synthetic, self-adjuvanting vaccine incorporating the tumor-associated carbohydrate Tn antigen and lipoamino acid-based Toll-like receptor 2 ligand. Abdel-Aal AB; El-Naggar D; Zaman M; Batzloff M; Toth I J Med Chem; 2012 Aug; 55(15):6968-74. PubMed ID: 22800462 [TBL] [Abstract][Full Text] [Related]
11. Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells. Khan S; Weterings JJ; Britten CM; de Jong AR; Graafland D; Melief CJ; van der Burg SH; van der Marel G; Overkleeft HS; Filippov DV; Ossendorp F Mol Immunol; 2009 Mar; 46(6):1084-91. PubMed ID: 19027958 [TBL] [Abstract][Full Text] [Related]
12. Lipid-based self-adjuvanting vaccines. Brown LE; Jackson DC Curr Drug Deliv; 2005 Oct; 2(4):383-93. PubMed ID: 16305441 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of a highly pure lipid core peptide based self-adjuvanting triepitopic group A streptococcal vaccine, and subsequent immunological evaluation. Moyle PM; Olive C; Ho MF; Good MF; Toth I J Med Chem; 2006 Oct; 49(21):6364-70. PubMed ID: 17034142 [TBL] [Abstract][Full Text] [Related]
15. TLR4 and MyD88 control protection and pulmonary granulocytic recruitment in a murine intranasal RSV immunization and challenge model. Cyr SL; Angers I; Guillot L; Stoica-Popescu I; Lussier M; Qureshi S; Burt DS; Ward BJ Vaccine; 2009 Jan; 27(3):421-30. PubMed ID: 19013492 [TBL] [Abstract][Full Text] [Related]
16. Self-adjuvanting multicomponent cancer vaccine candidates combining per-glycosylated MUC1 glycopeptides and the Toll-like receptor 2 agonist Pam3CysSer. Wilkinson BL; Day S; Malins LR; Apostolopoulos V; Payne RJ Angew Chem Int Ed Engl; 2011 Feb; 50(7):1635-9. PubMed ID: 21308921 [No Abstract] [Full Text] [Related]
17. Lipidation of intact proteins produces highly immunogenic vaccine candidates. Zeng W; Eriksson EM; Lew A; Jackson DC Mol Immunol; 2011 Jan; 48(4):490-6. PubMed ID: 21056473 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of thiol-reactive lipopeptide adjuvants. Incorporation into liposomes and study of their mitogenic effect on mouse splenocytes. Roth A; Espuelas S; Thumann C; Frisch B; Schuber F Bioconjug Chem; 2004; 15(3):541-53. PubMed ID: 15149182 [TBL] [Abstract][Full Text] [Related]
19. The role of Toll-like receptors 2 and 4 on reactive oxygen species and nitric oxide production by macrophage cells stimulated with root canal pathogens. Marcato LG; Ferlini AP; Bonfim RC; Ramos-Jorge ML; Ropert C; Afonso LF; Vieira LQ; Sobrinho AP Oral Microbiol Immunol; 2008 Oct; 23(5):353-9. PubMed ID: 18793356 [TBL] [Abstract][Full Text] [Related]
20. Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii. Mayer ML; Phillips CM; Townsend RA; Halperin SA; Lee SF Scand J Immunol; 2009 Apr; 69(4):351-6. PubMed ID: 19284500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]