These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 18726583)
1. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Kim SI; Andaya CB; Newman JW; Goyal SS; Tai TH Theor Appl Genet; 2008 Nov; 117(8):1291-301. PubMed ID: 18726583 [TBL] [Abstract][Full Text] [Related]
2. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Shi J; Wang H; Hazebroek J; Ertl DS; Harp T Plant J; 2005 Jun; 42(5):708-19. PubMed ID: 15918884 [TBL] [Abstract][Full Text] [Related]
3. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Xu XH; Zhao HJ; Liu QL; Frank T; Engel KH; An G; Shu QY Theor Appl Genet; 2009 Jun; 119(1):75-83. PubMed ID: 19370321 [TBL] [Abstract][Full Text] [Related]
4. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Liu QL; Xu XH; Ren XL; Fu HW; Wu DX; Shu QY Theor Appl Genet; 2007 Mar; 114(5):803-14. PubMed ID: 17219209 [TBL] [Abstract][Full Text] [Related]
5. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Shi J; Wang H; Wu Y; Hazebroek J; Meeley RB; Ertl DS Plant Physiol; 2003 Feb; 131(2):507-15. PubMed ID: 12586875 [TBL] [Abstract][Full Text] [Related]
6. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Kuwano M; Mimura T; Takaiwa F; Yoshida KT Plant Biotechnol J; 2009 Jan; 7(1):96-105. PubMed ID: 19021878 [TBL] [Abstract][Full Text] [Related]
7. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). Kishor DS; Lee C; Lee D; Venkatesh J; Seo J; Chin JH; Jin Z; Hong SK; Ham JK; Koh HJ PLoS One; 2019; 14(3):e0209636. PubMed ID: 30870429 [TBL] [Abstract][Full Text] [Related]
8. Phytic Acid Contents and Metabolite Profiles of Progenies from Crossing Tan Y; Zhou C; Goßner S; Li Y; Engel KH; Shu Q J Agric Food Chem; 2019 Oct; 67(42):11805-11814. PubMed ID: 31566383 [TBL] [Abstract][Full Text] [Related]
9. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Dorsch JA; Cook A; Young KA; Anderson JM; Bauman AT; Volkmann CJ; Murthy PP; Raboy V Phytochemistry; 2003 Mar; 62(5):691-706. PubMed ID: 12620321 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation. Yuan FJ; Zhu DH; Tan YY; Dong DK; Fu XJ; Zhu SL; Li BQ; Shu QY Theor Appl Genet; 2012 Nov; 125(7):1413-23. PubMed ID: 22733447 [TBL] [Abstract][Full Text] [Related]
11. The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Kim SI; Andaya CB; Goyal SS; Tai TH Theor Appl Genet; 2008 Sep; 117(5):769-79. PubMed ID: 18566795 [TBL] [Abstract][Full Text] [Related]
12. Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Suzuki M; Tanaka K; Kuwano M; Yoshida KT Gene; 2007 Dec; 405(1-2):55-64. PubMed ID: 17961936 [TBL] [Abstract][Full Text] [Related]
13. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Sakai H; Iwai T; Matsubara C; Usui Y; Okamura M; Yatou O; Terada Y; Aoki N; Nishida S; Yoshida KT Plant Sci; 2015 Sep; 238():170-7. PubMed ID: 26259185 [TBL] [Abstract][Full Text] [Related]
14. Metabolite profiling of two low phytic acid (lpa) rice mutants. Frank T; Meuleye BS; Miller A; Shu QY; Engel KH J Agric Food Chem; 2007 Dec; 55(26):11011-9. PubMed ID: 18052121 [TBL] [Abstract][Full Text] [Related]
15. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. Zhao H; Frank T; Tan Y; Zhou C; Jabnoune M; Arpat AB; Cui H; Huang J; He Z; Poirier Y; Engel KH; Shu Q New Phytol; 2016 Aug; 211(3):926-39. PubMed ID: 27110682 [TBL] [Abstract][Full Text] [Related]
16. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon. Zhao HJ; Cui HR; Xu XH; Tan YY; Fu JJ; Liu GZ; Poirier Y; Shu QY Theor Appl Genet; 2013 Dec; 126(12):3009-20. PubMed ID: 24042572 [TBL] [Abstract][Full Text] [Related]
17. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Hitz WD; Carlson TJ; Kerr PS; Sebastian SA Plant Physiol; 2002 Feb; 128(2):650-60. PubMed ID: 11842168 [TBL] [Abstract][Full Text] [Related]
19. A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. Panzeri D; Cassani E; Doria E; Tagliabue G; Forti L; Campion B; Bollini R; Brearley CA; Pilu R; Nielsen E; Sparvoli F New Phytol; 2011 Jul; 191(1):70-83. PubMed ID: 21395595 [TBL] [Abstract][Full Text] [Related]
20. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Yuan FJ; Zhao HJ; Ren XL; Zhu SL; Fu XJ; Shu QY Theor Appl Genet; 2007 Nov; 115(7):945-57. PubMed ID: 17701395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]