BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

856 related articles for article (PubMed ID: 18726959)

  • 1. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
    Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition?
    Harris LM; Desai RP; Welker NE; Papoutsakis ET
    Biotechnol Bioeng; 2000 Jan; 67(1):1-11. PubMed ID: 10581430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum.
    Mann MS; Lütke-Eversloh T
    Biotechnol Bioeng; 2013 Mar; 110(3):887-97. PubMed ID: 23096577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum.
    Bao T; Feng J; Jiang W; Fu H; Wang J; Yang ST
    World J Microbiol Biotechnol; 2020 Aug; 36(9):138. PubMed ID: 32794091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into the butyric acid metabolism of Clostridium acetobutylicum.
    Lehmann D; Radomski N; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1325-39. PubMed ID: 22576943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Clostridium acetobutylicum for alcohol production.
    Hou X; Peng W; Xiong L; Huang C; Chen X; Chen X; Zhang W
    J Biotechnol; 2013 Jun; 166(1-2):25-33. PubMed ID: 23651949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production.
    Lee JY; Jang YS; Lee J; Papoutsakis ET; Lee SY
    Biotechnol J; 2009 Oct; 4(10):1432-40. PubMed ID: 19830716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.
    Cooksley CM; Zhang Y; Wang H; Redl S; Winzer K; Minton NP
    Metab Eng; 2012 Nov; 14(6):630-41. PubMed ID: 22982601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways.
    Lehmann D; Hönicke D; Ehrenreich A; Schmidt M; Weuster-Botz D; Bahl H; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 May; 94(3):743-54. PubMed ID: 22246530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance.
    Sillers R; Chow A; Tracy B; Papoutsakis ET
    Metab Eng; 2008 Nov; 10(6):321-32. PubMed ID: 18725313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations.
    Tummala SB; Junne SG; Papoutsakis ET
    J Bacteriol; 2003 Jun; 185(12):3644-53. PubMed ID: 12775702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity.
    Wang S; Zhu Y; Zhang Y; Li Y
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1021-30. PubMed ID: 21935591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production.
    Cho C; Hong S; Moon HG; Jang YS; Kim D; Lee SY
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum.
    Alsaker KV; Paredes C; Papoutsakis ET
    Biotechnol Bioeng; 2010 Apr; 105(6):1131-47. PubMed ID: 19998280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios.
    Hönicke D; Janssen H; Grimmler C; Ehrenreich A; Lütke-Eversloh T
    N Biotechnol; 2012 May; 29(4):485-93. PubMed ID: 22285530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum.
    Jones AJ; Fast AG; Clupper M; Papoutsakis ET
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum.
    Wietzke M; Bahl H
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):749-61. PubMed ID: 22576944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes.
    Ventura JR; Hu H; Jahng D
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7505-16. PubMed ID: 23838793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.
    Yu L; Zhao J; Xu M; Dong J; Varghese S; Yu M; Tang IC; Yang ST
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.