These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 18727013)
1. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Miguel M; Dávalos A; Manso MA; de la Peña G; Lasunción MA; López-Fandiño R Mol Nutr Food Res; 2008 Dec; 52(12):1507-13. PubMed ID: 18727013 [TBL] [Abstract][Full Text] [Related]
2. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers. Ding L; Wang L; Zhang Y; Liu J J Agric Food Chem; 2015 Sep; 63(37):8143-50. PubMed ID: 26335384 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. Gleeson JP; Brayden DJ; Ryan SM Eur J Pharm Biopharm; 2017 Jun; 115():276-284. PubMed ID: 28315445 [TBL] [Abstract][Full Text] [Related]
4. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Satake M; Enjoh M; Nakamura Y; Takano T; Kawamura Y; Arai S; Shimizu M Biosci Biotechnol Biochem; 2002 Feb; 66(2):378-84. PubMed ID: 11999412 [TBL] [Abstract][Full Text] [Related]
5. Stability and Transport of Spent Hen-Derived ACE-Inhibitory Peptides IWHHT, IWH, and IW in Human Intestinal Caco-2 Cell Monolayers. Fan H; Xu Q; Hong H; Wu J J Agric Food Chem; 2018 Oct; 66(43):11347-11354. PubMed ID: 30280571 [TBL] [Abstract][Full Text] [Related]
6. alpha(2)-adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line. Berlioz F; Maoret JJ; Paris H; Laburthe M; Farinotti R; Rozé C J Pharmacol Exp Ther; 2000 Aug; 294(2):466-72. PubMed ID: 10900220 [TBL] [Abstract][Full Text] [Related]
7. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models. Foltz M; Cerstiaens A; van Meensel A; Mols R; van der Pijl PC; Duchateau GS; Augustijns P Peptides; 2008 Aug; 29(8):1312-20. PubMed ID: 18490081 [TBL] [Abstract][Full Text] [Related]
8. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane. Aito-Inoue M; Lackeyram D; Fan MZ; Sato K; Mine Y J Pept Sci; 2007 Jul; 13(7):468-74. PubMed ID: 17554807 [TBL] [Abstract][Full Text] [Related]
9. Role of Na+ in the asymmetric paracellular transport of 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg across rabbit colonic segments and Caco-2 cell monolayers. Yen WC; Lee VH J Pharmacol Exp Ther; 1995 Oct; 275(1):114-9. PubMed ID: 7562538 [TBL] [Abstract][Full Text] [Related]
10. The (193-209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Regazzo D; Mollé D; Gabai G; Tomé D; Dupont D; Leonil J; Boutrou R Mol Nutr Food Res; 2010 Oct; 54(10):1428-35. PubMed ID: 20397193 [TBL] [Abstract][Full Text] [Related]
11. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Hellwig M; Geissler S; Matthes R; Peto A; Silow C; Brandsch M; Henle T Chembiochem; 2011 May; 12(8):1270-9. PubMed ID: 21538757 [TBL] [Abstract][Full Text] [Related]
12. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers. Xu Q; Fan H; Yu W; Hong H; Wu J J Agric Food Chem; 2017 Aug; 65(34):7406-7414. PubMed ID: 28782363 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Shu C; Shen H; Hopfer U; Smith DE Drug Metab Dispos; 2001 Oct; 29(10):1307-15. PubMed ID: 11560874 [TBL] [Abstract][Full Text] [Related]
14. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers. Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184 [TBL] [Abstract][Full Text] [Related]
15. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2. Shimizu M; Tsunogai M; Arai S Peptides; 1997; 18(5):681-7. PubMed ID: 9213361 [TBL] [Abstract][Full Text] [Related]
16. Transport of ACE Inhibitory Peptides Ile-Gln-Pro and Val-Glu-Pro Derived from Spirulina platensis Across Caco-2 Monolayers. He YY; Li TT; Chen JX; She XX; Ren DF; Lu J J Food Sci; 2018 Oct; 83(10):2586-2592. PubMed ID: 30229911 [TBL] [Abstract][Full Text] [Related]
17. PEPT1 involved in the uptake and transepithelial transport of cefditoren in vivo and in vitro. Zhang Q; Liu Q; Wu J; Wang C; Peng J; Ma X; Liu K Eur J Pharmacol; 2009 Jun; 612(1-3):9-14. PubMed ID: 19371738 [TBL] [Abstract][Full Text] [Related]
18. Beta- and gamma-di- and tripeptides as potential substrates for the oligopeptide transporter hPepT1. Hubatsch I; Arvidsson PI; Seebach D; Luthman K; Artursson P J Med Chem; 2007 Oct; 50(21):5238-42. PubMed ID: 17887660 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers. Ding L; Wang L; Zhang T; Yu Z; Liu J Food Res Int; 2018 Apr; 106():475-480. PubMed ID: 29579950 [TBL] [Abstract][Full Text] [Related]
20. Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers. Takaishi N; Yoshida K; Satsu H; Shimizu M J Agric Food Chem; 2007 Jun; 55(13):5253-9. PubMed ID: 17536819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]