BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18727557)

  • 1. Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea, and mung bean protein hydrolysates.
    Aluko RE
    J AOAC Int; 2008; 91(4):947-56. PubMed ID: 18727557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds.
    Durak A; Baraniak B; Jakubczyk A; Świeca M
    Food Chem; 2013 Dec; 141(3):2177-83. PubMed ID: 23870945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins.
    Rudolph S; Lunow D; Kaiser S; Henle T
    Food Chem; 2017 Jun; 224():19-25. PubMed ID: 28159254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antihypertensive Properties of a Pea Protein Hydrolysate during Short- and Long-Term Oral Administration to Spontaneously Hypertensive Rats.
    Girgih AT; Nwachukwu ID; Onuh JO; Malomo SA; Aluko RE
    J Food Sci; 2016 May; 81(5):H1281-7. PubMed ID: 27037677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate.
    Li H; Aluko RE
    J Agric Food Chem; 2010 Nov; 58(21):11471-6. PubMed ID: 20929253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on structural, biological and functional activities of hydrolysates from Adzuki bean (Vigna angularis) and mung bean (Vigna radiata) protein concentrates using Alcalase and Flavourzyme.
    Karami Z; Butkinaree C; Yingchutrakul Y; Simanon N; Duangmal K
    Food Res Int; 2022 Nov; 161():111797. PubMed ID: 36192943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the inhibition of calcium/calmodulin-dependent protein kinase II by pea protein-derived peptides.
    Li H; Aluko RE
    J Nutr Biochem; 2005 Nov; 16(11):656-62. PubMed ID: 16111873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-allergic activity of mung bean (Vigna radiata (L.) Wilczek) protein hydrolysates produced by enzymatic hydrolysis using non-gastrointestinal and gastrointestinal enzymes.
    Budseekoad S; Takahashi Yupanqui C; Alashi AM; Aluko RE; Youravong W
    J Food Biochem; 2019 Jan; 43(1):e12674. PubMed ID: 31353487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates.
    Segura Campos MR; Chel Guerrero LA; Betancur Ancona DA
    J Sci Food Agric; 2010 Nov; 90(14):2512-8. PubMed ID: 20690111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-chelating activity of soy and pea protein hydrolysates obtained after different enzymatic treatments from protein isolates.
    El Hajj S; Irankunda R; Camaño Echavarría JA; Arnoux P; Paris C; Stefan L; Gaucher C; Boschi-Muller S; Canabady-Rochelle L
    Food Chem; 2023 Mar; 405(Pt A):134788. PubMed ID: 36370575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates.
    Humiski LM; Aluko RE
    J Food Sci; 2007 Oct; 72(8):S605-11. PubMed ID: 17995627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides.
    Li GH; Liu H; Shi YH; Le GW
    J Pharm Biomed Anal; 2005 Feb; 37(2):219-24. PubMed ID: 15708660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional cationic peptide fractions from flaxseed protein hydrolysates.
    Udenigwe CC; Aluko RE
    Plant Foods Hum Nutr; 2012 Mar; 67(1):1-9. PubMed ID: 22327315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes.
    Boschin G; Scigliuolo GM; Resta D; Arnoldi A
    Food Chem; 2014 Feb; 145():34-40. PubMed ID: 24128446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates.
    Bollati C; Xu R; Boschin G; Bartolomei M; Rivardo F; Li J; Arnoldi A; Lammi C
    Nutrients; 2022 Jun; 14(12):. PubMed ID: 35745109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [STUDIES IN VITRO INHIBITION OF THE ANGIOTENSIN-CONVERTING ENZYME-I, HYPOTENSIVE AND ANTIHYPERTENSIVE EFFECTS OF PEPTIDE FRACTIONS OF V. UNGUICULATA].
    Cú-Cañetas T; Betancur Ancona D; Gallegos Tintoré S; Sandoval Peraza M; Chel Guerrero L
    Nutr Hosp; 2015 Nov; 32(5):2117-25. PubMed ID: 26545668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin I converting enzyme inhibitory peptides obtained after in vitro hydrolysis of pea (Pisum sativum var. Bajka) globulins.
    Jakubczyk A; Baraniak B
    Biomed Res Int; 2014; 2014():438459. PubMed ID: 25250321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates.
    Mune Mune MA; Minka SR; Henle T
    Food Chem; 2018 Jun; 250():162-169. PubMed ID: 29412907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad bean and pea by-products as sources of fibre-rich ingredients: potential antioxidant activity measured in vitro.
    Mateos-Aparicio I; Redondo-Cuenca A; Villanueva-Suárez MJ
    J Sci Food Agric; 2012 Feb; 92(3):697-703. PubMed ID: 21919006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates.
    Garcia-Mora P; Peñas E; Frias J; Zieliński H; Wiczkowski W; Zielińska D; Martínez-Villaluenga C
    J Agric Food Chem; 2016 Mar; 64(8):1730-40. PubMed ID: 26857428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.