These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18727558)

  • 1. Biopharming to increase bioactive peptides in rice seed.
    Yang L; Wakasa Y; Takaiwa F
    J AOAC Int; 2008; 91(4):957-64. PubMed ID: 18727558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of rice seeds to produce human pharmaceuticals for oral therapy.
    Wakasa Y; Takaiwa F
    Biotechnol J; 2013 Oct; 8(10):1133-43. PubMed ID: 24092672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative nutritional compositions and proteomics analysis of transgenic Xa21 rice seeds compared to conventional rice.
    Gayen D; Paul S; Sarkar SN; Datta SK; Datta K
    Food Chem; 2016 Jul; 203():301-307. PubMed ID: 26948618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of recombinant thanatin in watery rice seeds that lack an accumulation of storage starch and proteins.
    Imamura T; Sekine KT; Yamashita T; Kusano H; Shimada H
    J Biotechnol; 2016 Feb; 219():28-33. PubMed ID: 26689479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.
    Wakasa Y; Takaiwa F
    Methods Mol Biol; 2016; 1385():223-47. PubMed ID: 26614293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compositional Analysis of Genetically Engineered GR2E "Golden Rice" in Comparison to That of Conventional Rice.
    Swamy BPM; Samia M; Boncodin R; Marundan S; Rebong DB; Ordonio RL; Miranda RT; Rebong ATO; Alibuyog AY; Adeva CC; Reinke R; MacKenzie DJ
    J Agric Food Chem; 2019 Jul; 67(28):7986-7994. PubMed ID: 31282158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Update on the use of transgenic rice seeds in oral immunotherapy.
    Takaiwa F
    Immunotherapy; 2013 Mar; 5(3):301-12. PubMed ID: 23444957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional peptides derived from rice bran proteins.
    Liu YQ; Strappe P; Shang WT; Zhou ZK
    Crit Rev Food Sci Nutr; 2019; 59(2):349-356. PubMed ID: 28886263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research of the contents of in vitro protein in the seed of sck transgenic rice].
    Wang R; Chen SB; Gong WK; Chen XP; Yang L; Zhu Z; Yang X
    Wei Sheng Yan Jiu; 2005 May; 34(3):326-9. PubMed ID: 16111043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A double built-in containment strategy for production of recombinant proteins in transgenic rice.
    Zhang X; Wang D; Zhao S; Shen Z
    PLoS One; 2014; 9(12):e115459. PubMed ID: 25531447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season.
    Xiao M; Dong S; Li Z; Tang X; Chen Y; Yang S; Wu C; Ouyang D; Fang C; Song Z
    Ecotoxicol Environ Saf; 2015 Dec; 122():275-89. PubMed ID: 26295752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a callus-specific selection system to develop transgenic rice seed accumulating a high level of recombinant protein.
    Wakasa Y; Takaiwa F
    Methods Mol Biol; 2012; 847():467-79. PubMed ID: 22351029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-level accumulation of foreign gene products in transgenic rice seeds by the callus-specific selection system.
    Wakasa Y; Ozawa K; Takaiwa F
    J Biosci Bioeng; 2009 Jan; 107(1):78-83. PubMed ID: 19147115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm.
    Montesinos L; Bundó M; Badosa E; San Segundo B; Coca M; Montesinos E
    BMC Plant Biol; 2017 Mar; 17(1):63. PubMed ID: 28292258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ Western hybridization: a new, highly sensitive technique to detect foreign and endogenous protein distribution in rice seeds.
    Qu LQ; Tada Y; Takaiwa F
    Plant Cell Rep; 2003 Nov; 22(4):282-5. PubMed ID: 12937942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.
    Montesinos L; Bundó M; Izquierdo E; Campo S; Badosa E; Rossignol M; Montesinos E; San Segundo B; Coca M
    PLoS One; 2016; 11(1):e0146919. PubMed ID: 26760761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeds as Economical Production Platform for Recombinant Proteins.
    Khan MS; Joyia FA; Mustafa G
    Protein Pept Lett; 2020; 27(2):89-104. PubMed ID: 31622192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods.
    Liu C; Liu W; Lu X; Chen W; Yang J; Zheng L
    Food Chem; 2014 Jun; 153():87-93. PubMed ID: 24491704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of transgenic rice seed accumulating a major Japanese cedar pollen allergen (Cry j 1) structurally disrupted for oral immunotherapy.
    Yang L; Suzuki K; Hirose S; Wakasa Y; Takaiwa F
    Plant Biotechnol J; 2007 Nov; 5(6):815-26. PubMed ID: 17714439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain.
    Jo YM; Cho K; Lee HJ; Lim SH; Kim JS; Kim YM; Lee JY
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29156580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.