These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. [MEG inverse solution using Gauss-Newton algorithm modified by Moore-Penrose inversion]. Li J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):265-8. PubMed ID: 11450550 [TBL] [Abstract][Full Text] [Related]
26. Influence of material viscoelasticity on the scattering of guided waves by defects. Predoi MV; Castaings M; Moreau L J Acoust Soc Am; 2008 Nov; 124(5):2883-94. PubMed ID: 19045776 [TBL] [Abstract][Full Text] [Related]
28. Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering. Brick Y; Boag A IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):262-73. PubMed ID: 20040452 [TBL] [Abstract][Full Text] [Related]
29. Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation. Sharipov F; Kalempa D J Acoust Soc Am; 2008 Oct; 124(4):1993-2001. PubMed ID: 19062839 [TBL] [Abstract][Full Text] [Related]
30. Dispersion of circumferential waves in cylindrically anisotropic layered pipes in plane strain. Vasudeva RY; Sudheer G; Vema AR J Acoust Soc Am; 2008 Jun; 123(6):4147-51. PubMed ID: 18537366 [TBL] [Abstract][Full Text] [Related]
31. Generalized eigenproblem of hybrid matrix for Floquet wave propagation in one-dimensional phononic crystals with solids and fluids. Tan EL Ultrasonics; 2010 Jan; 50(1):91-8. PubMed ID: 19850313 [TBL] [Abstract][Full Text] [Related]
32. Numerical investigation of elastic modes of propagation in helical waveguides. Treyssède F J Acoust Soc Am; 2007 Jun; 121(6):3398-408. PubMed ID: 17552691 [TBL] [Abstract][Full Text] [Related]
33. A system for magnetostrictive transduction of guided waves in fluid-filled pipes of small diameter. Challis RE; Phang AP; Lowe MJ; Mather ML IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1992-2004. PubMed ID: 18986895 [TBL] [Abstract][Full Text] [Related]
34. A Green's function method for surface acoustic waves in functionally graded materials. Matsuda O; Glorieux C J Acoust Soc Am; 2007 Jun; 121(6):3437-45. PubMed ID: 17552695 [TBL] [Abstract][Full Text] [Related]
35. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. Treeby BE; Cox BT J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722 [TBL] [Abstract][Full Text] [Related]
36. Computation of dispersion relations for axially symmetric guided waves in cylindrical structures by means of a spectral decomposition method. Höhne C; Prager J; Gravenkamp H Ultrasonics; 2015 Dec; 63():54-64. PubMed ID: 26126952 [TBL] [Abstract][Full Text] [Related]
37. Causality and the velocity of acoustic signals in bubbly liquids. Orris GJ; Dacol DK; Nicholas M J Acoust Soc Am; 2007 Jun; 121(6):3349-62. PubMed ID: 17552687 [TBL] [Abstract][Full Text] [Related]
38. Modeling scattering from azimuthally symmetric bathymetric features using wavefield superposition. Fawcett JA J Acoust Soc Am; 2007 Dec; 122(6):3286-95. PubMed ID: 18247740 [TBL] [Abstract][Full Text] [Related]
39. Ultrasonic elastic modes in solid bars: an application of the plane wave expansion method. Manzanares-Martinez B; Ramos-Mendieta F; Baltazar A J Acoust Soc Am; 2010 Jun; 127(6):3503-10. PubMed ID: 20550250 [TBL] [Abstract][Full Text] [Related]
40. Estimation of ultrasound attenuation and dispersion using short time Fourier transform. Zhao B; Basir OA; Mittal GS Ultrasonics; 2005 Mar; 43(5):375-81. PubMed ID: 15737388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]