These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18727998)

  • 1. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.
    Zhang Y; Cai N; Yang J; Xu B
    Chemosphere; 2008 Oct; 73(5):650-6. PubMed ID: 18727998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.
    Wang ZH; Zhou JH; Zhang YW; Lu ZM; Fan JR; Cen KF
    J Zhejiang Univ Sci B; 2005 Mar; 6(3):187-94. PubMed ID: 15682503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of oxygenated liquid additives on the urea based SNCR process.
    Tayyeb Javed M; Nimmo W; Mahmood A; Irfan N
    J Environ Manage; 2009 Aug; 90(11):3429-35. PubMed ID: 19540035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process.
    Cao Q; Wu S; Lui H; Liu D; Qiu P
    Chemosphere; 2009 Aug; 76(9):1199-205. PubMed ID: 19577276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and modeling study of the effect of CO and H2 on the urea DeNO(x) process in a 150kW laboratory reactor.
    Javed MT; Nimmo W; Gibbs BM
    Chemosphere; 2008 Jan; 70(6):1059-67. PubMed ID: 17845815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydrogen generated by dielectric barrier discharge of NH3 on selective non-catalytic reduction process.
    Byun Y; Ko KB; Cho M; Namkung W; Shin DN; Koh DJ
    Chemosphere; 2009 May; 75(6):815-8. PubMed ID: 19230950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of urea based SNCR system in the combustion effluent containing low level of baseline nitric oxide.
    Hossain KA; Mohd-Jaafar MN; Appalanidu KB; Mustafa A; Ani FN
    Environ Technol; 2005 Mar; 26(3):251-9. PubMed ID: 15881021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process.
    Bae SW; Roh SA; Kim SD
    Chemosphere; 2006 Sep; 65(1):170-5. PubMed ID: 16581102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction.
    Javed MT; Irfan N; Gibbs BM
    J Environ Manage; 2007 May; 83(3):251-89. PubMed ID: 16842901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators.
    Hwang IH; Minoya H; Matsuto T; Matsuo T; Matsumoto A; Sameshima R
    Chemosphere; 2009 Mar; 74(10):1379-84. PubMed ID: 19108871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of Na/K additives and flyash on NO reduction in a SNCR process.
    Hao J; Yu W; Lu P; Zhang Y; Zhu X
    Chemosphere; 2015 Mar; 122():213-218. PubMed ID: 25532766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical study of the influence of ammonia addition on the auto-ignition limits of methane/air mixtures.
    Van den Schoor F; Norman F; Vandebroek L; Verplaetsen F; Berghmans J
    J Hazard Mater; 2009 May; 164(2-3):1164-70. PubMed ID: 18926632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Kinetic mechanism and characteristics researches for hydrazine-based NOx removal at moderate to high temperatures].
    Hong L; Chen DZ; Wang D; Huang S
    Huan Jing Ke Xue; 2012 Aug; 33(8):2901-8. PubMed ID: 23213922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on a low-temperature SCR catalyst based on MnO(x)/TiO(2) prepared by sol-gel method.
    Wu Z; Jiang B; Liu Y; Zhao W; Guan B
    J Hazard Mater; 2007 Jul; 145(3):488-94. PubMed ID: 17188430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of arsenic vapor species with fly ash compounds: kinetics and speciation of the reaction with calcium silicates.
    Sterling RO; Helble JJ
    Chemosphere; 2003 Jun; 51(10):1111-9. PubMed ID: 12718977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on the thermal oxidation of 2-chlorophenol in air over the temperature range 450-900 degrees C.
    Briois C; Visez N; Baillet C; Sawerysyn JP
    Chemosphere; 2006 Mar; 62(11):1806-16. PubMed ID: 16213547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of gas emissions from coal stockpile.
    Kozinc J; Zupancic-Kralj L; Zapusek A
    Chemosphere; 2004 May; 55(8):1121-6. PubMed ID: 15050809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.
    Long XL; Xiao WD; Yuan WK
    Chemosphere; 2005 May; 59(6):811-7. PubMed ID: 15811409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature.
    Schnürer A; Nordberg A
    Water Sci Technol; 2008; 57(5):735-40. PubMed ID: 18401146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.