These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 18728007)
1. Tyrosine residues as redox cofactors in human hemoglobin: implications for engineering nontoxic blood substitutes. Reeder BJ; Grey M; Silaghi-Dumitrescu RL; Svistunenko DA; Bülow L; Cooper CE; Wilson MT J Biol Chem; 2008 Nov; 283(45):30780-7. PubMed ID: 18728007 [TBL] [Abstract][Full Text] [Related]
2. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute. Cooper CE; Silkstone GGA; Simons M; Rajagopal B; Syrett N; Shaik T; Gretton S; Welbourn E; Bülow L; Eriksson NL; Ronda L; Mozzarelli A; Eke A; Mathe D; Reeder BJ Free Radic Biol Med; 2019 Apr; 134():106-118. PubMed ID: 30594736 [TBL] [Abstract][Full Text] [Related]
3. Engineering tyrosine-based electron flow pathways in proteins: the case of aplysia myoglobin. Reeder BJ; Svistunenko DA; Cooper CE; Wilson MT J Am Chem Soc; 2012 May; 134(18):7741-9. PubMed ID: 22515641 [TBL] [Abstract][Full Text] [Related]
4. Tyrosine as a redox-active center in electron transfer to ferryl heme in globins. Reeder BJ; Cutruzzola F; Bigotti MG; Hider RC; Wilson MT Free Radic Biol Med; 2008 Feb; 44(3):274-83. PubMed ID: 18215736 [TBL] [Abstract][Full Text] [Related]
5. Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design. Silkstone GG; Silkstone RS; Wilson MT; Simons M; Bülow L; Kallberg K; Ratanasopa K; Ronda L; Mozzarelli A; Reeder BJ; Cooper CE Biochem J; 2016 Oct; 473(19):3371-83. PubMed ID: 27470146 [TBL] [Abstract][Full Text] [Related]
6. Novel Redox Active Tyrosine Mutations Enhance the Regeneration of Functional Oxyhemoglobin from Methemoglobin: Implications for Design of Blood Substitutes. Silkstone GGA; Simons M; Rajagopal BS; Shaik T; Reeder BJ; Cooper CE Adv Exp Med Biol; 2018; 1072():221-225. PubMed ID: 30178349 [TBL] [Abstract][Full Text] [Related]
7. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Cooper CE; Schaer DJ; Buehler PW; Wilson MT; Reeder BJ; Silkstone G; Svistunenko DA; Bulow L; Alayash AI Antioxid Redox Signal; 2013 Jun; 18(17):2264-73. PubMed ID: 22702311 [TBL] [Abstract][Full Text] [Related]
8. Autoreduction of ferryl myoglobin: discrimination among the three tyrosine and two tryptophan residues as electron donors. Lardinois OM; Ortiz de Montellano PR Biochemistry; 2004 Apr; 43(15):4601-10. PubMed ID: 15078107 [TBL] [Abstract][Full Text] [Related]
9. The peroxidatic activities of Myoglobin and Hemoglobin, their pathological consequences and possible medical interventions. Wilson MT; Reeder BJ Mol Aspects Med; 2022 Apr; 84():101045. PubMed ID: 34654576 [TBL] [Abstract][Full Text] [Related]
10. Intra- and intermolecular transfers of protein radicals in the reactions of sperm whale myoglobin with hydrogen peroxide. Lardinois OM; Ortiz de Montellano PR J Biol Chem; 2003 Sep; 278(38):36214-26. PubMed ID: 12855712 [TBL] [Abstract][Full Text] [Related]
11. The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation. Hathazi D; Scurtu F; Bischin C; Mot A; Attia AAA; Kongsted J; Silaghi-Dumitrescu R Molecules; 2018 Feb; 23(2):. PubMed ID: 29414908 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Eich RF; Li T; Lemon DD; Doherty DH; Curry SR; Aitken JF; Mathews AJ; Johnson KA; Smith RD; Phillips GN; Olson JS Biochemistry; 1996 Jun; 35(22):6976-83. PubMed ID: 8679521 [TBL] [Abstract][Full Text] [Related]
13. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Reeder BJ Antioxid Redox Signal; 2010 Oct; 13(7):1087-123. PubMed ID: 20170402 [TBL] [Abstract][Full Text] [Related]
14. The βLys66Tyr Variant of Human Hemoglobin as a Component of a Blood Substitute. Silkstone RS; Silkstone G; Baath JA; Rajagopal B; Nicholls P; Reeder BJ; Ronda L; Bulow L; Cooper CE Adv Exp Med Biol; 2016; 876():455-460. PubMed ID: 26782245 [TBL] [Abstract][Full Text] [Related]
15. Design of recombinant hemoglobins for use in transfusion fluids. Fronticelli C; Koehler RC Crit Care Clin; 2009 Apr; 25(2):357-71, Table of Contents. PubMed ID: 19341913 [TBL] [Abstract][Full Text] [Related]
16. Engineering Ascaris hemoglobin oxygen affinity in sperm whale myoglobin: role of tyrosine B10. Travaglini Allocatelli C; Cutruzzolà F; Brancaccio A; Vallone B; Brunori M FEBS Lett; 1994 Sep; 352(1):63-6. PubMed ID: 7925944 [TBL] [Abstract][Full Text] [Related]
17. The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology. Reeder BJ; Svistunenko DA; Cooper CE; Wilson MT Antioxid Redox Signal; 2004 Dec; 6(6):954-66. PubMed ID: 15548893 [TBL] [Abstract][Full Text] [Related]
18. The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical. Rao SI; Wilks A; Hamberg M; Ortiz de Montellano PR J Biol Chem; 1994 Mar; 269(10):7210-6. PubMed ID: 8125933 [TBL] [Abstract][Full Text] [Related]
19. Genetic engineering of myoglobin as a simple prototype for hemoglobin-based blood substitutes. Olson JS Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):429-41. PubMed ID: 7994366 [TBL] [Abstract][Full Text] [Related]