These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 18728306)
1. Defining drug targets in yeast haploinsufficiency screens: application to human translational pharmacology. Roberge M Sci Signal; 2008 Aug; 1(34):pt5. PubMed ID: 18728306 [TBL] [Abstract][Full Text] [Related]
2. Genetic Screens for Determination of Mechanism of Action. Gay-Andrieu F; Alex D; Calderone R Methods Mol Biol; 2016; 1356():165-72. PubMed ID: 26519072 [TBL] [Abstract][Full Text] [Related]
3. Chemical-genetic approaches for exploring the mode of action of natural products. Lopez A; Parsons AB; Nislow C; Giaever G; Boone C Prog Drug Res; 2008; 66():237, 239-71. PubMed ID: 18416308 [TBL] [Abstract][Full Text] [Related]
4. Genomic profiling of drug sensitivities via induced haploinsufficiency. Giaever G; Shoemaker DD; Jones TW; Liang H; Winzeler EA; Astromoff A; Davis RW Nat Genet; 1999 Mar; 21(3):278-83. PubMed ID: 10080179 [TBL] [Abstract][Full Text] [Related]
5. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Biswas C; Zuo X; Chen SC; Schibeci SD; Forwood JK; Jolliffe KA; Sorrell TC; Djordjevic JT Fungal Genet Biol; 2014 Jun; 67():71-81. PubMed ID: 24731805 [TBL] [Abstract][Full Text] [Related]
6. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae. Singh-Babak SD; Shekhar T; Smith AM; Giaever G; Nislow C; Cowen LE Mol Biosyst; 2012 Oct; 8(10):2575-84. PubMed ID: 22751784 [TBL] [Abstract][Full Text] [Related]
7. Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Baetz K; McHardy L; Gable K; Tarling T; Rebérioux D; Bryan J; Andersen RJ; Dunn T; Hieter P; Roberge M Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4525-30. PubMed ID: 15070751 [TBL] [Abstract][Full Text] [Related]
8. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains. Suresh S; Schlecht U; Xu W; Miranda M; Davis RW; Nislow C; Giaever G; St Onge RP Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587778 [TBL] [Abstract][Full Text] [Related]
9. Yeast and drug discovery. Hughes TR Funct Integr Genomics; 2002 Sep; 2(4-5):199-211. PubMed ID: 12192593 [TBL] [Abstract][Full Text] [Related]
10. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. Vandenbosch D; De Canck E; Dhondt I; Rigole P; Nelis HJ; Coenye T FEMS Yeast Res; 2013 Dec; 13(8):720-30. PubMed ID: 24034557 [TBL] [Abstract][Full Text] [Related]
11. Integrated antifungal drug discovery in Candida albicans. Sanglard D Nat Biotechnol; 2001 Mar; 19(3):212-3. PubMed ID: 11231545 [No Abstract] [Full Text] [Related]
12. Exploring gene function and drug action using chemogenomic dosage assays. Ericson E; Hoon S; St Onge RP; Giaever G; Nislow C Methods Enzymol; 2010; 470():233-55. PubMed ID: 20946813 [TBL] [Abstract][Full Text] [Related]
13. Genetic Screens of an Anti-Candida Natural Product Using the Heterozygous Saccharomyces cerevisiae Mutant Library. Zhang L; Li D; Calderone R; She X Methods Mol Biol; 2022; 2542():141-149. PubMed ID: 36008662 [TBL] [Abstract][Full Text] [Related]
14. Heterozygous mutations cause genetic instability in a yeast model of cancer evolution. Coelho MC; Pinto RM; Murray AW Nature; 2019 Feb; 566(7743):275-278. PubMed ID: 30700905 [TBL] [Abstract][Full Text] [Related]
15. Genomics strategies for antifungal drug discovery--from gene discovery to compound screening. Willins DA; Kessler M; Walker SS; Reyes GR; Cottarel G Curr Pharm Des; 2002; 8(13):1137-54. PubMed ID: 12052224 [TBL] [Abstract][Full Text] [Related]
16. Synergy of the antibiotic colistin with echinocandin antifungals in Candida species. Zeidler U; Bougnoux ME; Lupan A; Helynck O; Doyen A; Garcia Z; Sertour N; Clavaud C; Munier-Lehmann H; Saveanu C; d'Enfert C J Antimicrob Chemother; 2013 Jun; 68(6):1285-96. PubMed ID: 23378416 [TBL] [Abstract][Full Text] [Related]
17. Type I methionine aminopeptidase from Saccharomyces cerevisiae is a potential target for antifungal drug screening. Chen LL; Li J; Li JY; Luo QL; Mao WF; Shen Q; Nan FJ; Ye QZ Acta Pharmacol Sin; 2004 Jul; 25(7):907-14. PubMed ID: 15210064 [TBL] [Abstract][Full Text] [Related]
18. Redundancy reveals drugs in action. Oliver S Nat Genet; 1999 Mar; 21(3):245-6. PubMed ID: 10080166 [No Abstract] [Full Text] [Related]
19. Genome-wide analysis of the expression profile of Saccharomyces cerevisiae in response to treatment with the plant isoflavone, wighteone, as a potential antifungal agent. Yin H; Zhao Y; Zhang Y; Zhang H; Xu L; Zou Z; Yang W; Cheng J; Zhou Y Biotechnol Lett; 2006 Jan; 28(2):99-105. PubMed ID: 16369693 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Deutschbauer AM; Jaramillo DF; Proctor M; Kumm J; Hillenmeyer ME; Davis RW; Nislow C; Giaever G Genetics; 2005 Apr; 169(4):1915-25. PubMed ID: 15716499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]