These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18728321)

  • 1. Diffraction of X-ray free-electron laser femtosecond pulses on single crystals in the Bragg and Laue geometry.
    Bushuev VA
    J Synchrotron Radiat; 2008 Sep; 15(Pt 5):495-505. PubMed ID: 18728321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of selective compression of femtosecond pulses in the Laue scheme of the dynamical Bragg diffraction in 1D photonic crystals.
    Svyakhovskiy SE; Skorynin AA; Bushuev VA; Chekalin SV; Kompanets VO; Maydykovskiy AI; Murzina TV; Mantsyzov BI
    Opt Express; 2014 Dec; 22(25):31002-7. PubMed ID: 25607049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction from strongly bent crystals and spectroscopy of X-ray free-electron laser pulses.
    Kaganer VM; Petrov I; Samoylova L
    Acta Crystallogr A Found Adv; 2020 Jan; 76(Pt 1):55-69. PubMed ID: 31908349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short X-ray pulses in a Laue-case crystal.
    Graeff W
    J Synchrotron Radiat; 2002 Mar; 9(Pt 2):82-5. PubMed ID: 11872927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast X-ray diffraction in liquid, solution and gas: present status and future prospects.
    Kim J; Kim KH; Lee JH; Ihee H
    Acta Crystallogr A; 2010 Mar; 66(Pt 2):270-80. PubMed ID: 20164650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the time response of a Bragg reflection to short X-ray pulses.
    Graeff W
    J Synchrotron Radiat; 2004 May; 11(Pt 3):261-5. PubMed ID: 15103113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interference fringes in multiple Bragg-Laue mode.
    Fukamachi T; Hirano K; Negishi R; Kanematsu Y; Jongsukswat S; Hirano K; Kawamura T
    Acta Crystallogr A; 2011 Mar; 67(Pt 2):154-9. PubMed ID: 21325718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray synchrotron studies of ultrafast crystalline dynamics.
    DeCamp MF; Reis DA; Fritz DM; Bucksbaum PH; Dufresne EM; Clarke R
    J Synchrotron Radiat; 2005 Mar; 12(Pt 2):177-92. PubMed ID: 15728970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise analysis of the components of diffraction by cylindrical crystals.
    Hu HC; Yang Z
    Acta Crystallogr A; 2004 Nov; 60(Pt 6):562-4. PubMed ID: 15507738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfocusing of hard X-rays with cylindrically bent crystal monochromators.
    Schulze C; Lienert U; Hanfland M; Lorenzen M; Zontone F
    J Synchrotron Radiat; 1998 Mar; 5(Pt 2):77-81. PubMed ID: 16687807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-space transformation of femtosecond free-electron laser pulses by periodical multilayers.
    Ksenzov D; Grigorian S; Pietsch U
    J Synchrotron Radiat; 2008 Jan; 15(Pt 1):19-25. PubMed ID: 18097074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical effects in the integrated X-ray scattering intensity from imperfect crystals in Bragg diffraction geometry. I. Semi-dynamical model.
    Molodkin VB; Olikhovskii SI; Dmitriev SV; Nizkova AI; Lizunov VV
    Acta Crystallogr A Found Adv; 2020 Jan; 76(Pt 1):45-54. PubMed ID: 31908348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-wave approximation in surface effects in asymmetric Laue crystals.
    Guida M; Palmisano C
    Acta Crystallogr A; 2010 Jul; 66(Pt 4):470-8. PubMed ID: 20555187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced structural dynamics of polar solids studied by femtosecond X-ray diffraction.
    Elsaesser T; Woerner M
    Acta Crystallogr A; 2010 Mar; 66(Pt 2):168-78. PubMed ID: 20164640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond time-resolved powder diffraction experiments using hard X-ray free-electron lasers.
    Blome C; Tschentscher T; Davaasambuu J; Durand P; Techert S
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):812-9. PubMed ID: 16239753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosecond x-ray Laue diffraction apparatus suitable for laser shock compression experiments.
    Suggit M; Kimminau G; Hawreliak J; Remington B; Park N; Wark J
    Rev Sci Instrum; 2010 Aug; 81(8):083902. PubMed ID: 20815613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of interference fringes in the Bragg-(Bragg)m-Laue mode.
    Hirano K; Fukamachi T; Yoshizawa M; Negishi R; Hirano K; Kawamura T
    Acta Crystallogr A; 2009 Jul; 65(Pt 4):253-8. PubMed ID: 19535846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics.
    Bourgeois D; Schotte F; Brunori M; Vallone B
    Photochem Photobiol Sci; 2007 Oct; 6(10):1047-56. PubMed ID: 17914477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference fringes in multiple Bragg-Laue mode and mirage fringes from bent crystals.
    Fukamachi T; Tohyama M; Hirano K; Yoshizawa M; Negishi R; Ju D; Hirano K; Kawamura T
    Acta Crystallogr A; 2010 May; 66(Pt 3):421-6. PubMed ID: 20404447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developments in the dynamical theory of high energy electron reflection.
    Ma Y; Marks LD
    Microsc Res Tech; 1992 Feb; 20(4):371-89. PubMed ID: 1498352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.