These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1872834)

  • 1. Substrate effects on the enzymatic activity of alpha-chymotrypsin in reverse micelles.
    Mao Q; Walde P
    Biochem Biophys Res Commun; 1991 Aug; 178(3):1105-12. PubMed ID: 1872834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity of elastase in reverse micelles.
    Bru R; Walde P
    Biochem Mol Biol Int; 1993 Nov; 31(4):685-92. PubMed ID: 8298497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Product inhibition of alpha-chymotrypsin in reverse micelles.
    Bru R; Walde P
    Eur J Biochem; 1991 Jul; 199(1):95-103. PubMed ID: 1712303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and activity of trypsin in reverse micelles.
    Walde P; Peng Q; Fadnavis NW; Battistel E; Luisi PL
    Eur J Biochem; 1988 Apr; 173(2):401-9. PubMed ID: 3360018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-anthraniloyl-Ala-Ala-Phe-4-nitroanilide, a highly sensitive substrate for subtilisins.
    Stambolieva NA; Ivanov IP; Yomtova VM
    Arch Biochem Biophys; 1992 May; 294(2):703-6. PubMed ID: 1567226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic behaviour of alpha-chymotrypsin in reverse micelles. A stopped-flow study.
    Mao Q; Walde P; Luisi PL
    Eur J Biochem; 1992 Aug; 208(1):165-70. PubMed ID: 1511684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Kinetic Pathways of Enzyme-Substrate Interaction in a Microfluidic Channel: Nanoscopic Water Dynamics as a Switch.
    Singh P; Mukherjee D; Singha S; Das R; Pal SK
    Chemistry; 2019 Jul; 25(41):9728-9736. PubMed ID: 31062438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic hydrolysis of N-benzoyl-L-tyrosine p-nitroanilide by α-chymotrypsin in DMSO-water/AOT/n-heptane reverse micelles. A unique interfacial effect on the enzymatic activity.
    Moyano F; Setien E; Silber JJ; Correa NM
    Langmuir; 2013 Jul; 29(26):8245-54. PubMed ID: 23734596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of enzymatic reactions in vesicles: the case of alpha-chymotrypsin.
    Blocher M; Walde P; Dunn IJ
    Biotechnol Bioeng; 1999 Jan; 62(1):36-43. PubMed ID: 10099511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse micelles as a water-property-control system to investigate the hydration/activity relationship of alpha-chymotrypsin.
    Dorovska-Taran V; Veeger C; Visser AJ
    Eur J Biochem; 1993 Dec; 218(3):1013-9. PubMed ID: 8281919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilized enzymes in reverse micelles: studies with gel-entrapped trypsin and alpha-chymotrypsin in AOT reverse micelles.
    Fadnavis NW; Luisi PL
    Biotechnol Bioeng; 1989 Apr; 33(10):1277-82. PubMed ID: 18587860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interactions in reverse micelles: trypsin shows superactivity towards a protein substrate alpha-chymotrypsinogen A in reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane.
    Fadnavis NW; Chandraprakash Y; Deshpande A
    Biochimie; 1993; 75(11):995-9. PubMed ID: 7510131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The behavior of proteases in lecithin reverse micelles.
    Peng QQ; Luisi PL
    Eur J Biochem; 1990 Mar; 188(2):471-80. PubMed ID: 2180704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new substrate and two inhibitors applicable for thermitase, subtilisin BPN' and alpha-chymotrypsin. Comparison of kinetic parameters with customary substrates and inhibitors.
    Brömme D; Fittkau S
    Biomed Biochim Acta; 1985; 44(7-8):1089-94. PubMed ID: 3910035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of human pancreatic elastase 2.
    Del Mar EG; Largman C; Brodrick JW; Fassett M; Geokas MC
    Biochemistry; 1980 Feb; 19(3):468-72. PubMed ID: 6898442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and catalytic properties of enzymes in reverse micelles.
    Creagh AL; Prausnitz JM; Blanch HW
    Enzyme Microb Technol; 1993 May; 15(5):383-92. PubMed ID: 7684231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and activity modulation of chymotrypsins in AOT reversed micelles by protein-interface interaction: interaction of alpha-chymotrypsin with a negative interface leads to a cooperative breakage of a salt bridge that keeps the catalytic active conformation (Ile16-Asp194).
    Almeida FC; Valente AP; Chaimovich H
    Biotechnol Bioeng; 1998 Aug; 59(3):360-3. PubMed ID: 10099347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity and spectroscopic properties of bovine liver catalase in sodium bis(2-ethylhexyl)sulfosuccinate/isooctane reverse micelles.
    Haber J; Maślakiewicz P; Rodakiewicz-Nowak J; Walde P
    Eur J Biochem; 1993 Oct; 217(2):567-73. PubMed ID: 7693463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clipsin, a chymotrypsin-like protease in rat brain which is irreversibly inhibited by alpha-1-antichymotrypsin.
    Nelson RB; Siman R
    J Biol Chem; 1990 Mar; 265(7):3836-43. PubMed ID: 2303481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilayer permeability-based substrate selectivity of an enzyme in liposomes.
    Walde P; Marzetta B
    Biotechnol Bioeng; 1998 Jan; 57(2):216-9. PubMed ID: 10099196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.