BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18728352)

  • 1. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.
    Honda MJ; Shinmura Y; Shinohara Y
    Cells Tissues Organs; 2009; 189(1-4):261-7. PubMed ID: 18728352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells.
    Shinmura Y; Tsuchiya S; Hata K; Honda MJ
    J Cell Physiol; 2008 Dec; 217(3):728-38. PubMed ID: 18663726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcultured odontogenic epithelial cells in combination with dental mesenchymal cells produce enamel-dentin-like complex structures.
    Honda MJ; Shinohara Y; Hata KI; Ueda M
    Cell Transplant; 2007; 16(8):833-47. PubMed ID: 18088003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The location and characteristics of two populations of dental pulp cells affect tooth development.
    Sumita Y; Tsuchiya S; Asahina I; Kagami H; Honda MJ
    Eur J Oral Sci; 2009 Apr; 117(2):113-21. PubMed ID: 19320719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The induction of dentin bridge-like structures by constructs of subcultured dental pulp-derived cells and porous HA/TCP in porcine teeth.
    Ando Y; Honda MJ; Ohshima H; Tonomura A; Ohara T; Itaya T; Kagami H; Ueda M
    Nagoya J Med Sci; 2009 Feb; 71(1-2):51-62. PubMed ID: 19358475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel culture system for porcine odontogenic epithelial cells using a feeder layer.
    Honda MJ; Shimodaira T; Ogaeri T; Shinohara Y; Hata K; Ueda M
    Arch Oral Biol; 2006 Apr; 51(4):282-90. PubMed ID: 16257386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of vitronectin bound to insulin-like growth factor-I and insulin-like growth factor binding protein-3 on porcine enamel organ-derived epithelial cells.
    Shinohara Y; Tsuchiya S; Hatae K; Honda MJ
    Int J Dent; 2012; 2012():386282. PubMed ID: 22567008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of human ameloblast-lineage cells in vitro.
    Yan Q; Zhang Y; Li W; DenBesten PK
    Eur J Oral Sci; 2006 May; 114 Suppl 1():154-8; discussion 164-5, 380-1. PubMed ID: 16674678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of ameloblast-lineage cells in a three-dimensional Matrigel environment.
    Li W; Machule D; Gao C; DenBesten PK
    Eur J Oral Sci; 2006 May; 114 Suppl 1():159-63; discussion 164-5, 380-1. PubMed ID: 16674679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histochemical localization of cholinesterase activity in the dental epithelium of guinea pig teeth.
    Jayawardena CK; Takano Y
    Anat Embryol (Berl); 2004 Jul; 208(4):281-7. PubMed ID: 15224211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dental epithelial histo-morphogenesis in the mouse: positional information versus cell history.
    Hu B; Nadiri A; Bopp-Kuchler S; Perrin-Schmitt F; Wang S; Lesot H
    Arch Oral Biol; 2005 Feb; 50(2):131-6. PubMed ID: 15721139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crown formation during tooth development and tissue engineering.
    Nait Lechguer A; Kuchler-Bopp S; Lesot H
    J Exp Zool B Mol Dev Evol; 2009 Jul; 312B(5):399-407. PubMed ID: 19132735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perlecan, a basement membrane-type heparan sulfate proteoglycan, in the enamel organ: its intraepithelial localization in the stellate reticulum.
    Ida-Yonemochi H; Ohshiro K; Swelam W; Metwaly H; Saku T
    J Histochem Cytochem; 2005 Jun; 53(6):763-72. PubMed ID: 15928325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro characterization of enamel epithelium and pulp cells in mouse tooth germs.
    Ishizeki K
    Kaibogaku Zasshi; 1996 Aug; 71(4):294-307. PubMed ID: 8968131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of human primary enamel organ epithelial cells in vitro.
    DenBesten PK; Machule D; Zhang Y; Yan Q; Li W
    Arch Oral Biol; 2005 Aug; 50(8):689-94. PubMed ID: 15958200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of primary dental pulp cells in vitro.
    Coppe C; Zhang Y; Den Besten PK
    Pediatr Dent; 2009; 31(7):467-71. PubMed ID: 20108736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds.
    Young CS; Terada S; Vacanti JP; Honda M; Bartlett JD; Yelick PC
    J Dent Res; 2002 Oct; 81(10):695-700. PubMed ID: 12351668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An immunohistochemical study of the expression of heat-shock protein-25 and cell proliferation in the dental pulp and enamel organ during odontogenesis in rat molars.
    Nakasone N; Yoshie H; Ohshima H
    Arch Oral Biol; 2006 May; 51(5):378-86. PubMed ID: 16259940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the pulpal route on uptake of 45Ca in enamel and dentin of developing rat molars.
    Wennberg A; Bawden JW
    J Dent Res; 1978 Feb; 57(2):313-8. PubMed ID: 277527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold.
    Iwatsuki S; Honda MJ; Harada H; Ueda M
    Eur J Oral Sci; 2006 Aug; 114(4):310-7. PubMed ID: 16911102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.