These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18728867)

  • 1. Dynamics of the dispersion interaction in an energy transfer system.
    Andrews DL; Bradshaw DS; Leeder JM; Rodríguez J
    Phys Chem Chem Phys; 2008 Sep; 10(34):5250-5. PubMed ID: 18728867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the interactions between molecules in an off-resonant laser beam: Evaluating the response to energy migration and optically induced pair forces.
    Andrews DL; Leeder JM
    J Chem Phys; 2009 Jan; 130(3):034504. PubMed ID: 19173528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single and dual beam optical switching of resonance energy transfer.
    Andrews DL; Crisp RG; Li S
    J Chem Phys; 2007 Nov; 127(17):174702. PubMed ID: 17994837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance energy transfer: influence of neighboring matter absorbing in the wavelength region of the acceptor.
    Andrews DL; Ford JS
    J Chem Phys; 2013 Jul; 139(1):014107. PubMed ID: 23822293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules.
    Salam A
    J Chem Phys; 2006 Jan; 124(1):14302. PubMed ID: 16409031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower bound of energy dissipation in optical excitation transfer via optical near-field interactions.
    Naruse M; Hori H; Kobayashi K; Holmström P; Thylén L; Ohtsu M
    Opt Express; 2010 Nov; 18 Suppl 4():A544-53. PubMed ID: 21165087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching.
    Bradshaw DS; Andrews DL
    J Chem Phys; 2008 Apr; 128(14):144506. PubMed ID: 18412458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared-mode assisted resonant energy transfer in the weak coupling regime.
    Hennebicq E; Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Chem Phys; 2009 Jun; 130(21):214505. PubMed ID: 19508074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interparticle interactions: energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation.
    Bradshaw DS; Andrews DL
    J Phys Chem A; 2013 Jan; 117(1):75-82. PubMed ID: 23228088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances.
    Leng W; Kelley AM
    J Chem Phys; 2007 Oct; 127(16):164509. PubMed ID: 17979362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of complex shaped ultrafast pulses in highly optically dense samples.
    Davis JC; Fetterman MR; Warren WS; Goswami D
    J Chem Phys; 2008 Apr; 128(15):154312. PubMed ID: 18433214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent and symmetry-selective charge-transfer contribution to SERS in gold nanoparticle aggregates.
    Yoon JH; Park JS; Yoon S
    Langmuir; 2009 Nov; 25(21):12475-80. PubMed ID: 19817481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach.
    Ishizaki A; Fleming GR
    J Chem Phys; 2009 Jun; 130(23):234111. PubMed ID: 19548715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the dephasing dynamics of water from linear field-resolved pulse propagation experiments and simulations in highly absorbing solutions.
    Gruetzmacher JA; Nome RA; Moran AM; Scherer NF
    J Chem Phys; 2008 Dec; 129(22):224502. PubMed ID: 19071923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electric field induced by light can explain cellular responses to electromagnetic energy: a hypothesis of mechanism.
    Amat A; Rigau J; Waynant RW; Ilev IK; Anders JJ
    J Photochem Photobiol B; 2006 Feb; 82(2):152-60. PubMed ID: 16300958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular interactions in solution: elucidating the influence of the solvent.
    Gora RW; Bartkowiak W; Roszak S; Leszczynski J
    J Chem Phys; 2004 Feb; 120(6):2802-13. PubMed ID: 15268426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism for optical enhancement and suppression of fluorescence.
    Bradshaw DS; Andrews DL
    J Phys Chem A; 2009 Jun; 113(24):6537-9. PubMed ID: 19473049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.