BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18729006)

  • 1. Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases.
    Gupte SA
    Curr Opin Investig Drugs; 2008 Sep; 9(9):993-1000. PubMed ID: 18729006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.
    Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA
    Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
    Gupte SA; Levine RJ; Gupte RS; Young ME; Lionetti V; Labinskyy V; Floyd BC; Ojaimi C; Bellomo M; Wolin MS; Recchia FA
    J Mol Cell Cardiol; 2006 Aug; 41(2):340-9. PubMed ID: 16828794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.
    Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M
    Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway.
    Parsanathan R; Jain SK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease.
    Hecker PA; Leopold JA; Gupte SA; Recchia FA; Stanley WC
    Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H491-500. PubMed ID: 23241320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart.
    Gupte RS; Vijay V; Marks B; Levine RJ; Sabbah HN; Wolin MS; Recchia FA; Gupte SA
    J Card Fail; 2007 Aug; 13(6):497-506. PubMed ID: 17675065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II.
    Matsui R; Xu S; Maitland KA; Hayes A; Leopold JA; Handy DE; Loscalzo J; Cohen RA
    Circulation; 2005 Jul; 112(2):257-63. PubMed ID: 15998684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.
    Zhao G; Zhao Y; Wang X; Xu Y
    Neurochem Int; 2012 Jul; 61(2):146-55. PubMed ID: 22580330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.
    Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
    Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Glucose-6-Phosphate Dehydrogenase Activity Attenuates Right Ventricle Pressure and Hypertrophy Elicited by VEGFR Inhibitor + Hypoxia.
    Kitagawa A; Jacob C; Jordan A; Waddell I; McMurtry IF; Gupte SA
    J Pharmacol Exp Ther; 2021 May; 377(2):284-292. PubMed ID: 33758056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-6-phosphate dehydrogenase increases Ca
    Gupte R; Dhagia V; Rocic P; Ochi R; Gupte SA
    Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H144-H158. PubMed ID: 32442021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway.
    Tang BL
    J Cell Biochem; 2019 Sep; 120(9):14285-14295. PubMed ID: 31127649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 20-HETE-induced mitochondrial superoxide production and inflammatory phenotype in vascular smooth muscle is prevented by glucose-6-phosphate dehydrogenase inhibition.
    Lakhkar A; Dhagia V; Joshi SR; Gotlinger K; Patel D; Sun D; Wolin MS; Schwartzman ML; Gupte SA
    Am J Physiol Heart Circ Physiol; 2016 May; 310(9):H1107-17. PubMed ID: 26921441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.