These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 18729089)
1. Eutectic phase in water-ice: a self-assembled environment conducive to metal-catalyzed non-enzymatic RNA polymerization. Monnard PA; Ziock H Chem Biodivers; 2008 Aug; 5(8):1521-1539. PubMed ID: 18729089 [TBL] [Abstract][Full Text] [Related]
2. Metal-ion catalyzed polymerization in the eutectic phase in water-ice: a possible approach to template-directed RNA polymerization. Monnard PA; Szostak JW J Inorg Biochem; 2008; 102(5-6):1104-11. PubMed ID: 18329104 [TBL] [Abstract][Full Text] [Related]
3. Prebiotic chemistry in eutectic solutions at the water-ice matrix. Menor-Salván C; Marín-Yaseli MR Chem Soc Rev; 2012 Aug; 41(16):5404-15. PubMed ID: 22660387 [TBL] [Abstract][Full Text] [Related]
4. Sliding over the blocks in enzyme-free RNA copying--one-pot primer extension in ice. Löffler PM; Groen J; Dörr M; Monnard PA PLoS One; 2013; 8(9):e75617. PubMed ID: 24058695 [TBL] [Abstract][Full Text] [Related]
5. Catalysis in abiotic structured media: an approach to selective synthesis of biopolymers. Monnard PA Cell Mol Life Sci; 2005 Mar; 62(5):520-34. PubMed ID: 15747059 [TBL] [Abstract][Full Text] [Related]
6. Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Monnard PA Life (Basel); 2016 Nov; 6(4):. PubMed ID: 27827919 [TBL] [Abstract][Full Text] [Related]
8. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Monnard PA; Apel CL; Kanavarioti A; Deamer DW Astrobiology; 2002; 2(2):139-52. PubMed ID: 12469365 [TBL] [Abstract][Full Text] [Related]
9. Ice as a protocellular medium for RNA replication. Attwater J; Wochner A; Pinheiro VB; Coulson A; Holliger P Nat Commun; 2010 Sep; 1():76. PubMed ID: 20865803 [TBL] [Abstract][Full Text] [Related]
10. Formation of RNA phosphodiester bond by histidine-containing dipeptides. Wieczorek R; Dörr M; Chotera A; Luisi PL; Monnard PA Chembiochem; 2013 Jan; 14(2):217-23. PubMed ID: 23255284 [TBL] [Abstract][Full Text] [Related]
11. Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. Monnard PA; Kanavarioti A; Deamer DW J Am Chem Soc; 2003 Nov; 125(45):13734-40. PubMed ID: 14599212 [TBL] [Abstract][Full Text] [Related]
12. Prebiotic Evolution and Self-Assembly of Nucleic Acids. Lazcano A ACS Nano; 2018 Oct; 12(10):9643-9647. PubMed ID: 30347987 [TBL] [Abstract][Full Text] [Related]
13. Ring-opening polymerization of cyclic esters by cyclodextrins. Harada A; Osaki M; Takashima Y; Yamaguchi H Acc Chem Res; 2008 Sep; 41(9):1143-52. PubMed ID: 18690725 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the roles of nucleotide synthesis, polymerization, and recombination in the origin of autocatalytic sets of RNAs. Wu M; Higgs PG Astrobiology; 2011 Nov; 11(9):895-906. PubMed ID: 22059642 [TBL] [Abstract][Full Text] [Related]
15. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples. Joshi PC; Dubey K; Aldersley MF; Sausville M Biochem Biophys Res Commun; 2015 Jun; 462(2):99-104. PubMed ID: 25888789 [TBL] [Abstract][Full Text] [Related]
16. Dynamics and reactivity of trapped electrons on supported ice crystallites. Stähler J; Gahl C; Wolf M Acc Chem Res; 2012 Jan; 45(1):131-8. PubMed ID: 22185698 [TBL] [Abstract][Full Text] [Related]