These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 18729114)
1. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry. Díaz DD; Cid JJ; Vázquez P; Torres T Chemistry; 2008; 14(30):9261-73. PubMed ID: 18729114 [TBL] [Abstract][Full Text] [Related]
2. "Click" chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. Díaz DD; Rajagopal K; Strable E; Schneider J; Finn MG J Am Chem Soc; 2006 May; 128(18):6056-7. PubMed ID: 16669673 [TBL] [Abstract][Full Text] [Related]
3. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Adhikari B; Nanda J; Banerjee A Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927 [TBL] [Abstract][Full Text] [Related]
4. Organogels from different self-assembling new dendritic peptides: morphology, rheology, and structural investigations. Palui G; Garai A; Nanda J; Nandi AK; Banerjee A J Phys Chem B; 2010 Jan; 114(3):1249-56. PubMed ID: 20041726 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents. Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979 [TBL] [Abstract][Full Text] [Related]
6. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities. Samanta SK; Pal A; Bhattacharya S Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602 [TBL] [Abstract][Full Text] [Related]
7. Polycondensation and stabilization of chirally ordered molecular organogels derived from alkoxysilyl group- containing L-glutamide lipid. Takafuji M; Azuma N; Miyamoto K; Maeda S; Ihara H Langmuir; 2009 Aug; 25(15):8428-33. PubMed ID: 19292429 [TBL] [Abstract][Full Text] [Related]
8. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Filpponen I; Argyropoulos DS Biomacromolecules; 2010 Apr; 11(4):1060-6. PubMed ID: 20235575 [TBL] [Abstract][Full Text] [Related]
9. A synthetic amino acid residue containing a new oligopeptide-based photosensitive fluorescent organogel. Maiti DK; Banerjee A Chem Asian J; 2013 Jan; 8(1):113-20. PubMed ID: 23086712 [TBL] [Abstract][Full Text] [Related]
11. Pyrene-based fluorescent ambidextrous gelators: scaffolds for mechanically robust SWNT-gel nanocomposites. Mandal D; Kar T; Das PK Chemistry; 2014 Jan; 20(5):1349-58. PubMed ID: 24339266 [TBL] [Abstract][Full Text] [Related]
12. Helical Self-Assembly of Optically Active Glycoconjugated Phthalocyanine J-Aggregates. Bächle F; Maichle-Mössmer C; Ziegler T Chempluschem; 2019 Aug; 84(8):1081-1093. PubMed ID: 31943966 [TBL] [Abstract][Full Text] [Related]
13. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. Patel AR; Babaahmadi M; Lesaffer A; Dewettinck K J Agric Food Chem; 2015 May; 63(19):4862-9. PubMed ID: 25932656 [TBL] [Abstract][Full Text] [Related]
14. MPTTF-containing tripeptide-based organogels: receptor for 2,4,6-trinitrophenol and multiple stimuli-responsive properties. Liu Y; Wang Y; Jin L; Chen T; Yin B Soft Matter; 2016 Jan; 12(3):934-45. PubMed ID: 26563974 [TBL] [Abstract][Full Text] [Related]
15. The solvent-gelator interaction as the origin of different diffusivity behavior of diols in gels formed with sugar-based low-molecular-mass gelator. Kowalczuk J; Bielejewski M; Lapiński A; Luboradzki R; Tritt-Goc J J Phys Chem B; 2014 Apr; 118(14):4005-15. PubMed ID: 24635027 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, optical, and mesomorphic properties of self-assembled organogels featuring phenylethynyl framework with elaborated long-chain pyridine-2,6-dicarboxamides. Shen YT; Li CH; Chang KC; Chin SY; Lin HA; Liu YM; Hung CY; Hsu HF; Sun SS Langmuir; 2009 Aug; 25(15):8714-22. PubMed ID: 19284766 [TBL] [Abstract][Full Text] [Related]
17. In vitro release of lysozyme from gelatin microspheres: effect of cross-linking agents and thermoreversible gel as suspending medium. Hiwale P; Lampis S; Conti G; Caddeo C; Murgia S; Fadda AM; Monduzzi M Biomacromolecules; 2011 Sep; 12(9):3186-93. PubMed ID: 21809827 [TBL] [Abstract][Full Text] [Related]
18. Efficient CuAAC click formation of functional hemoglobin bis-tetramers. Yang Y; Kluger R Chem Commun (Camb); 2010 Oct; 46(40):7557-9. PubMed ID: 20852763 [TBL] [Abstract][Full Text] [Related]
19. Small-peptide-based organogel kit: towards the development of multicomponent self-sorting organogels. Afrasiabi R; Kraatz HB Chemistry; 2013 Nov; 19(47):15862-71. PubMed ID: 24203887 [TBL] [Abstract][Full Text] [Related]
20. Aryl 4,6-O-arylidene-1-thio-beta-d-glycopyranoside-based new organogelators and their gels. Roy S; Chakraborty A; Ghosh R Carbohydr Res; 2008 Oct; 343(15):2523-9. PubMed ID: 18619583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]