These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Eggler AL; Liu G; Pezzuto JM; van Breemen RB; Mesecar AD Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10070-5. PubMed ID: 16006525 [TBL] [Abstract][Full Text] [Related]
7. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894 [TBL] [Abstract][Full Text] [Related]
8. Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. Aracena-Parks P; Goonasekera SA; Gilman CP; Dirksen RT; Hidalgo C; Hamilton SL J Biol Chem; 2006 Dec; 281(52):40354-68. PubMed ID: 17071618 [TBL] [Abstract][Full Text] [Related]
9. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity. Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958 [TBL] [Abstract][Full Text] [Related]
10. Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent. Eggler AL; Luo Y; van Breemen RB; Mesecar AD Chem Res Toxicol; 2007 Dec; 20(12):1878-84. PubMed ID: 17935299 [TBL] [Abstract][Full Text] [Related]
11. Modification of keap1 cysteine residues by sulforaphane. Hu C; Eggler AL; Mesecar AD; van Breemen RB Chem Res Toxicol; 2011 Apr; 24(4):515-21. PubMed ID: 21391649 [TBL] [Abstract][Full Text] [Related]
12. Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Giangregorio N; Palmieri F; Indiveri C Biochim Biophys Acta; 2013 Nov; 1830(11):5299-304. PubMed ID: 23948593 [TBL] [Abstract][Full Text] [Related]
13. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. Lo SC; Li X; Henzl MT; Beamer LJ; Hannink M EMBO J; 2006 Aug; 25(15):3605-17. PubMed ID: 16888629 [TBL] [Abstract][Full Text] [Related]
14. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649 [TBL] [Abstract][Full Text] [Related]
15. Redox regulation of a soybean tyrosine-specific protein phosphatase. Dixon DP; Fordham-Skelton AP; Edwards R Biochemistry; 2005 May; 44(21):7696-703. PubMed ID: 15909984 [TBL] [Abstract][Full Text] [Related]
16. Fuzzy complex formation between the intrinsically disordered prothymosin α and the Kelch domain of Keap1 involved in the oxidative stress response. Khan H; Cino EA; Brickenden A; Fan J; Yang D; Choy WY J Mol Biol; 2013 Mar; 425(6):1011-27. PubMed ID: 23318954 [TBL] [Abstract][Full Text] [Related]
17. Glutathione adduct of methylmercury activates the Keap1-Nrf2 pathway in SH-SY5Y cells. Yoshida E; Abiko Y; Kumagai Y Chem Res Toxicol; 2014 Oct; 27(10):1780-6. PubMed ID: 25271560 [TBL] [Abstract][Full Text] [Related]
18. Reduction potentials of protein disulfides and catalysis of glutathionylation and deglutathionylation by glutaredoxin enzymes. Ukuwela AA; Bush AI; Wedd AG; Xiao Z Biochem J; 2017 Nov; 474(22):3799-3815. PubMed ID: 28963348 [TBL] [Abstract][Full Text] [Related]
19. Ultra-Rapid Glutathionylation of Ribonuclease: Is this the Real Incipit of its Oxidative Folding? Bocedi A; Cattani G; Gambardella G; Ticconi S; Cozzolino F; Di Fusco O; Pucci P; Ricci G Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683668 [TBL] [Abstract][Full Text] [Related]
20. Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. Brennan MS; Matos MF; Li B; Hronowski X; Gao B; Juhasz P; Rhodes KJ; Scannevin RH PLoS One; 2015; 10(3):e0120254. PubMed ID: 25793262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]