BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18729334)

  • 1. Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite.
    Zhang H; Fu Q; Yao Y; Zhang Z; Ma T; Tan D; Bao X
    Langmuir; 2008 Oct; 24(19):10874-8. PubMed ID: 18729334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of evaporated nickel nanoparticles with highly oriented pyrolytic graphite: Back-bonding to surface defects, as studied by X-ray photoelectron spectroscopy.
    Yang DQ; Sacher E
    J Phys Chem B; 2005 Oct; 109(41):19329-34. PubMed ID: 16853496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of the interaction of evaporated Pt nanoparticles with variously treated surfaces of highly oriented pyrolytic graphite.
    Yang DQ; Zhang GX; Sacher E; José-Yacaman M; Elizondo N
    J Phys Chem B; 2006 Apr; 110(16):8348-56. PubMed ID: 16623519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon 1s X-ray photoemission line shape analysis of highly oriented pyrolytic graphite: the influence of structural damage on peak asymmetry.
    Yang DQ; Sacher E
    Langmuir; 2006 Jan; 22(3):860-2. PubMed ID: 16430237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis.
    Song Z; Cai T; Hanson JC; Rodriguez JA; Hrbek J
    J Am Chem Soc; 2004 Jul; 126(27):8576-84. PubMed ID: 15238017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG.
    Taing J; Cheng MH; Hemminger JC
    ACS Nano; 2011 Aug; 5(8):6325-33. PubMed ID: 21790177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal reduction of Pd molecular cluster precursors at highly ordered pyrolytic graphite surfaces.
    Díaz-Ayala R; Arroyo L; Raptis R; Cabrera CR
    Langmuir; 2004 Sep; 20(19):8329-35. PubMed ID: 15350110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of Electrochemically Synthesized Silver Nanocrystallites for the Preferential SERS Enhancement of Defect Modes on Thermally Etched Graphite Surfaces.
    Zoval JV; Biernacki PR; Penner RM
    Anal Chem; 1996 May; 68(9):1585-92. PubMed ID: 21619124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite.
    Zhang G; Sun S; Bostetter M; Poulin S; Sacher E
    J Colloid Interface Sci; 2010 Oct; 350(1):16-21. PubMed ID: 20650466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media.
    Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L
    Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I).
    Wang P; Huang B; Zhang Q; Zhang X; Qin X; Dai Y; Zhan J; Yu J; Liu H; Lou Z
    Chemistry; 2010 Sep; 16(33):10042-7. PubMed ID: 20645327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthraquinonedisulfonate electrochemistry:  a comparison of glassy carbon, hydrogenated glassy carbon, highly oriented pyrolytic graphite, and diamond electrodes.
    Xu J; Chen Q; Swain GM
    Anal Chem; 1998 Aug; 70(15):3146-54. PubMed ID: 21644653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The growth of silver on an ordered alumina surface.
    Luo K; Lai X; Yi CW; Davis KA; Gath KK; Goodman DW
    J Phys Chem B; 2005 Mar; 109(9):4064-8. PubMed ID: 16851464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental studies of the reactions between hyperthermal O(3P) and graphite: graphene-based direct dynamics and beam-surface scattering approaches.
    Paci JT; Upadhyaya HP; Zhang J; Schatz GC; Minton TK
    J Phys Chem A; 2009 Apr; 113(16):4677-85. PubMed ID: 19301890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite.
    Paredes JI; Martínez-Alonso A; Tascón JM
    Langmuir; 2007 Aug; 23(17):8932-43. PubMed ID: 17628085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steric effects in the scattering of oriented CH3Cl molecular beam from a graphite surface: weak interaction of physisorption.
    Fukuyama T; Okada M; Kasai T
    J Phys Chem A; 2009 Dec; 113(52):14749-54. PubMed ID: 20028169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of CCl(4) reactions on Ag and Si surfaces by in situ ultraviolet photoemission electron microscopy.
    Yao Y; Fu Q; Tan D; Bao X
    J Phys Condens Matter; 2009 Aug; 21(31):314014. PubMed ID: 21828575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature growth of bismuth thin films with (111) facet on highly oriented pyrolytic graphite.
    Song F; Wells JW; Jiang Z; Saxegaard M; Wahlström E
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8525-32. PubMed ID: 25849866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.