These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 18729376)
1. Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose (Rosa damascena Mill.) petals. Shikov V; Kammerer DR; Mihalev K; Mollov P; Carle R J Agric Food Chem; 2008 Sep; 56(18):8521-6. PubMed ID: 18729376 [TBL] [Abstract][Full Text] [Related]
2. Origin of the color of Cv. rhapsody in blue rose and some other so-called "blue" roses. Gonnet JF J Agric Food Chem; 2003 Aug; 51(17):4990-4. PubMed ID: 12903958 [TBL] [Abstract][Full Text] [Related]
3. Influence of different phenolic copigments on the color of malvidin 3-glucoside. Gómez-Míguez M; González-Manzano S; Escribano-Bailón MT; Heredia FJ; Santos-Buelga C J Agric Food Chem; 2006 Jul; 54(15):5422-9. PubMed ID: 16848527 [TBL] [Abstract][Full Text] [Related]
4. The blue anthocyanin pigments from the blue flowers of Heliophila coronopifolia L. (Brassicaceae). Saito N; Tatsuzawa F; Toki K; Shinoda K; Shigihara A; Honda T Phytochemistry; 2011 Dec; 72(17):2219-29. PubMed ID: 21903230 [TBL] [Abstract][Full Text] [Related]
5. Effect of glucuronosylation on anthocyanin color stability. Osmani SA; Hansen EH; Malien-Aubert C; Olsen CE; Bak S; Møller BL J Agric Food Chem; 2009 Apr; 57(8):3149-55. PubMed ID: 19281238 [TBL] [Abstract][Full Text] [Related]
6. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Sadilova E; Carle R; Stintzing FC Mol Nutr Food Res; 2007 Dec; 51(12):1461-71. PubMed ID: 17979100 [TBL] [Abstract][Full Text] [Related]
7. Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species. Kumar N; Bhandari P; Singh B; Gupta AP; Kaul VK J Sep Sci; 2008 Feb; 31(2):262-7. PubMed ID: 18172921 [TBL] [Abstract][Full Text] [Related]
8. Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Wallace TC; Giusti MM J Food Sci; 2008 May; 73(4):C241-8. PubMed ID: 18460117 [TBL] [Abstract][Full Text] [Related]
9. Stability of copigmented anthocyanins and ascorbic acid in a grape juice model system. Brenes CH; Del Pozo-Insfran D; Talcott ST J Agric Food Chem; 2005 Jan; 53(1):49-56. PubMed ID: 15631508 [TBL] [Abstract][Full Text] [Related]
10. Phytochemical composition and pigment stability of Açai (Euterpe oleracea Mart.). Del Pozo-Insfran D; Brenes CH; Talcott ST J Agric Food Chem; 2004 Mar; 52(6):1539-45. PubMed ID: 15030208 [TBL] [Abstract][Full Text] [Related]
11. Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. Schwarz M; Picazo-Bacete JJ; Winterhalter P; Hermosín-Gutiérrez I J Agric Food Chem; 2005 Oct; 53(21):8372-81. PubMed ID: 16218690 [TBL] [Abstract][Full Text] [Related]
12. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Katsumoto Y; Fukuchi-Mizutani M; Fukui Y; Brugliera F; Holton TA; Karan M; Nakamura N; Yonekura-Sakakibara K; Togami J; Pigeaire A; Tao GQ; Nehra NS; Lu CY; Dyson BK; Tsuda S; Ashikari T; Kusumi T; Mason JG; Tanaka Y Plant Cell Physiol; 2007 Nov; 48(11):1589-600. PubMed ID: 17925311 [TBL] [Abstract][Full Text] [Related]
13. Influence of copigment derived from Tasmannia pepper leaf on Davidson's plum anthocyanins. Jensen MB; López-de-Dicastillo Bergamo CA; Payet RM; Liu X; Konczak I J Food Sci; 2011 Apr; 76(3):C447-53. PubMed ID: 21535813 [TBL] [Abstract][Full Text] [Related]
14. Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method. Iriel A; Lagorio MG Photochem Photobiol Sci; 2009 Mar; 8(3):337-44. PubMed ID: 19255674 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the retention of phytochemicals and organoleptic attributes in muscadine grape juice through a combined approach between dense phase CO2 processing and copigmentation. Del Pozo-Insfran D; Balaban MO; Talcott ST J Agric Food Chem; 2006 Sep; 54(18):6705-12. PubMed ID: 16939329 [TBL] [Abstract][Full Text] [Related]
16. Charge-transfer complexation as a general phenomenon in the copigmentation of anthocyanins. Ferreira da Silva P; Lima JC; Freitas AA; Shimizu K; Maçanita AL; Quina FH J Phys Chem A; 2005 Aug; 109(32):7329-38. PubMed ID: 16834098 [TBL] [Abstract][Full Text] [Related]
17. Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. Del Pozo-Insfran D; Del Follo-Martinez A; Talcott ST; Brenes CH J Food Sci; 2007 May; 72(4):S247-53. PubMed ID: 17995786 [TBL] [Abstract][Full Text] [Related]
18. Slantingly cross loading sample system enables simultaneous performance of separation and mixture to detect molecular interactions on thin-layer chromatography. Shimizu-Yumoto H; Hayashi N; Ichimura K; Nakayama M J Chromatogr A; 2012 Jul; 1245():183-9. PubMed ID: 22640837 [TBL] [Abstract][Full Text] [Related]
19. Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions. Fischer UA; Carle R; Kammerer DR Food Chem; 2013 Jun; 138(2-3):1800-9. PubMed ID: 23411312 [TBL] [Abstract][Full Text] [Related]
20. Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of Rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii. Kumar N; Bhandari P; Singh B; Bari SS Food Chem Toxicol; 2009 Feb; 47(2):361-7. PubMed ID: 19100811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]