BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 18729405)

  • 1. Effect of polarization on the opsin shift in rhodopsins. 2. Empirical polarization models for proteins.
    Wanko M; Hoffmann M; Frähmcke J; Frauenheim T; Elstner M
    J Phys Chem B; 2008 Sep; 112(37):11468-78. PubMed ID: 18729405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polarization on the opsin shift in rhodopsins. 1. A combined QM/QM/MM model for bacteriorhodopsin and pharaonis sensory rhodopsin II.
    Wanko M; Hoffmann M; Frauenheim T; Elstner M
    J Phys Chem B; 2008 Sep; 112(37):11462-7. PubMed ID: 18698712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating absorption shifts for retinal proteins: computational challenges.
    Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M
    J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model systems for the investigation of the opsin shift in bacteriorhodopsin.
    Lasogga L; Rettig W; Otto H; Wallat I; Bricks J
    J Phys Chem A; 2010 Feb; 114(5):2179-88. PubMed ID: 20085356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption studies of neutral retinal Schiff base chromophores.
    Nielsen IB; Petersen MA; Lammich L; Nielsen MB; Andersen LH
    J Phys Chem A; 2006 Nov; 110(46):12592-6. PubMed ID: 17107108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.
    Mo Y; Gao J
    J Phys Chem B; 2006 Feb; 110(7):2976-80. PubMed ID: 16494296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational simulations of aqueous solvated alpha-conotoxin GI and its single disulfide analogues using a polarizable force field model.
    Jiang N; Ma J
    J Phys Chem A; 2008 Oct; 112(40):9854-67. PubMed ID: 18788721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined QM/MM study of the opsin shift in bacteriorhodopsin.
    Rajamani R; Gao J
    J Comput Chem; 2002 Jan; 23(1):96-105. PubMed ID: 11913393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching.
    Tomasello G; Olaso-González G; Altoè P; Stenta M; Serrano-Andrés L; Merchán M; Orlandi G; Bottoni A; Garavelli M
    J Am Chem Soc; 2009 Apr; 131(14):5172-86. PubMed ID: 19309158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II.
    Hoffmann M; Wanko M; Strodel P; König PH; Frauenheim T; Schulten K; Thiel W; Tajkhorshid E; Elstner M
    J Am Chem Soc; 2006 Aug; 128(33):10808-18. PubMed ID: 16910676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the opsin shift of deprotonated retinal schiff base in the M state of bacteriorhodopsin.
    Fujimoto KJ; Asai K; Hasegawa JY
    Phys Chem Chem Phys; 2010 Oct; 12(40):13107-16. PubMed ID: 20830417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A polarizable continuum approach for the study of heterogeneous dielectric environments.
    Iozzi MF; Cossi M; Improta R; Rega N; Barone V
    J Chem Phys; 2006 May; 124(18):184103. PubMed ID: 16709093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin.
    Sato Y; Hata M; Neya S; Hoshino T
    J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent.
    Nakano H; Yamamoto T
    J Chem Phys; 2012 Apr; 136(13):134107. PubMed ID: 22482540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.