BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18729473)

  • 21. Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures.
    Tang K; Li F; Shvartsburg AA; Strittmatter EF; Smith RD
    Anal Chem; 2005 Oct; 77(19):6381-8. PubMed ID: 16194103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of higher-order differential ion mobility separations using new asymmetric waveforms.
    Shvartsburg AA; Mashkevich SV; Smith RD
    J Phys Chem A; 2006 Mar; 110(8):2663-73. PubMed ID: 16494377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of ion motion in FAIMS through combined use of SIMION and modified SDS.
    Prasad S; Tang K; Manura D; Papanastasiou D; Smith RD
    Anal Chem; 2009 Nov; 81(21):8749-57. PubMed ID: 19785446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of the design and operation of FAIMS analyzers.
    Shvartsburg AA; Tang K; Smith RD
    J Am Soc Mass Spectrom; 2005 Jan; 16(1):2-12. PubMed ID: 15653358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements.
    Robinson EW; Williams ER
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1427-1437. PubMed ID: 16023362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential ion mobility separations of peptides with resolving power exceeding 50.
    Shvartsburg AA; Tang K; Smith RD
    Anal Chem; 2010 Jan; 82(1):32-5. PubMed ID: 19938817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of Zero-/High-Field Ion Mobility Orthogonal Separation Using a Hyphenated DMA-FAIMS System and Validation of the Two-Temperature Theory at Arbitrary Field for Tetraalkylammonium Salts in Nitrogen.
    Gandhi VD; Lee J; Hua L; Latif M; Hogan CJ; Larriba-Andaluz C
    Anal Chem; 2023 May; 95(20):7941-7949. PubMed ID: 37172072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting ion mobility as a function of the electric field for small ions in light gases.
    Gandhi VD; Larriba-Andaluz C
    Anal Chim Acta; 2021 Nov; 1184():339019. PubMed ID: 34625252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gas-phase conformers of the [M + 2H](2+) ion of bradykinin investigated by combining high-field asymmetric waveform ion mobility spectrometry, hydrogen/deuterium exchange, and energy-loss measurements.
    Purves RW; Barnett DA; Ells B; Guevremont R
    Rapid Commun Mass Spectrom; 2001; 15(16):1453-6. PubMed ID: 11507759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures.
    Shvartsburg AA; Tang K; Smith RD
    Anal Chem; 2004 Dec; 76(24):7366-74. PubMed ID: 15595881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrahigh-resolution differential ion mobility spectrometry using extended separation times.
    Shvartsburg AA; Smith RD
    Anal Chem; 2011 Jan; 83(1):23-9. PubMed ID: 21117630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry.
    Guevremont R
    J Chromatogr A; 2004 Nov; 1058(1-2):3-19. PubMed ID: 15595648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.
    Beach DG; Melanson JE; Purves RW
    Anal Bioanal Chem; 2015 Mar; 407(9):2473-84. PubMed ID: 25619987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion Mobility Separation of Peptide Isotopomers.
    Kaszycki JL; Bowman AP; Shvartsburg AA
    J Am Soc Mass Spectrom; 2016 May; 27(5):795-9. PubMed ID: 26944281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Supramolecular Complexes of 3-Methylxanthine with Field Asymmetric Waveform Ion Mobility Spectrometry Combined with Mass Spectrometry.
    Arthur KL; Eiceman GA; Reynolds JC; Creaser CS
    J Am Soc Mass Spectrom; 2016 May; 27(5):800-9. PubMed ID: 26914231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. To What Extent is FAIMS Beneficial in the Analysis of Proteins?
    Cooper HJ
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):566-77. PubMed ID: 26843211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and experiment of high-field asymmetric waveform ion mobility spectrometry chip based on an integrated temperature control printed circuit board structure.
    Zeng H; Zhang YQ; Wang YF; Du XX; Xiao WX; Li H
    Rapid Commun Mass Spectrom; 2024 Mar; 38(5):e9699. PubMed ID: 38355881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multidimensional separation and analysis of alpha-1-acid glycoprotein N-glycopeptides using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and nano-liquid chromatography tandem mass spectrometry.
    Chandler KB; Marrero Roche DE; Sackstein R
    Anal Bioanal Chem; 2023 Jan; 415(3):379-390. PubMed ID: 36401639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides.
    Li J; Purves RW; Richards JC
    Anal Chem; 2004 Aug; 76(16):4676-83. PubMed ID: 15307776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.