These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18729486)

  • 1. Extreme resistance of superhydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test.
    Brunet P; Lapierre F; Thomy V; Coffinier Y; Boukherroub R
    Langmuir; 2008 Oct; 24(19):11203-8. PubMed ID: 18729486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible electrowetting on superhydrophobic double-nanotextured surfaces.
    Lapierre F; Thomy V; Coffinier Y; Blossey R; Boukherroub R
    Langmuir; 2009 Jun; 25(11):6551-8. PubMed ID: 19402607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures.
    Lapierre F; Brunet P; Coffinier Y; Thomy V; Blossey R; Boukherroub R
    Faraday Discuss; 2010; 146():125-139; discussion 195-215, 395-403. PubMed ID: 21043418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-(de)wetting on superhydrophobic surfaces.
    Lapierre F; Coffinier Y; Boukherroub R; Thomy V
    Langmuir; 2013 Nov; 29(44):13346-51. PubMed ID: 24088024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers.
    Dhindsa MS; Smith NR; Heikenfeld J; Rack PD; Fowlkes JD; Doktycz MJ; Melechko AV; Simpson ML
    Langmuir; 2006 Oct; 22(21):9030-4. PubMed ID: 17014150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative testing of robustness on superomniphobic surfaces by drop impact.
    Nguyen TP; Brunet P; Coffinier Y; Boukherroub R
    Langmuir; 2010 Dec; 26(23):18369-73. PubMed ID: 21028759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrowetting of superhydrophobic ZnO nanorods.
    Campbell JL; Breedon M; Latham K; Kalantar-zadeh K
    Langmuir; 2008 May; 24(9):5091-8. PubMed ID: 18373379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure.
    Li W; Fang G; Li Y; Qiao G
    J Phys Chem B; 2008 Jun; 112(24):7234-43. PubMed ID: 18491941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic electrowetting-on-dielectric (DEWOD) on unstretched and stretched teflon.
    Lee MW; Latthe SS; Yarin AL; Yoon SS
    Langmuir; 2013 Jun; 29(25):7758-67. PubMed ID: 23706038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrowetting on a polymer microlens array.
    Im M; Kim DH; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Jul; 26(14):12443-7. PubMed ID: 20465273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching.
    Xiu Y; Zhang S; Yelundur V; Rohatgi A; Hess DW; Wong CP
    Langmuir; 2008 Sep; 24(18):10421-6. PubMed ID: 18710271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature.
    Maitra T; Tiwari MK; Antonini C; Schoch P; Jung S; Eberle P; Poulikakos D
    Nano Lett; 2014 Jan; 14(1):172-82. PubMed ID: 24320719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting of a drop on a sphere.
    Eral HB; Manukyan G; Oh JM
    Langmuir; 2011 May; 27(9):5340-6. PubMed ID: 21466229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces.
    Kulinich SA; Farzaneh M
    Langmuir; 2009 Aug; 25(16):8854-6. PubMed ID: 19719211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces.
    Kusumaatmaja H; Yeomans JM
    Langmuir; 2007 May; 23(11):6019-32. PubMed ID: 17451253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.
    Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C
    Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible electrowetting on superhydrophobic silicon nanowires.
    Verplanck N; Galopin E; Camart JC; Thomy V; Coffinier Y; Boukherroub R
    Nano Lett; 2007 Mar; 7(3):813-7. PubMed ID: 17302459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser.
    Baldacchini T; Carey JE; Zhou M; Mazur E
    Langmuir; 2006 May; 22(11):4917-9. PubMed ID: 16700574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercooled water drops impacting superhydrophobic textures.
    Maitra T; Antonini C; Tiwari MK; Mularczyk A; Imeri Z; Schoch P; Poulikakos D
    Langmuir; 2014 Sep; 30(36):10855-61. PubMed ID: 25157476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.