BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1873464)

  • 1. Time-resolved changes in equatorial x-ray diffraction and stiffness during rise of tetanic tension in intact length-clamped single muscle fibers.
    Cecchi G; Griffiths PJ; Bagni MA; Ashley CC; Maeda Y
    Biophys J; 1991 Jun; 59(6):1273-83. PubMed ID: 1873464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved equatorial X-ray diffraction measurements in single intact muscle fibres.
    Griffiths PJ; Ashley CC; Bagni MA; Cecchi G; Maèda Y
    Adv Exp Med Biol; 1993; 332():409-20; discussion 420-2. PubMed ID: 8109354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice spacing changes accompanying isometric tension development in intact single muscle fibers.
    Bagni MA; Cecchi G; Griffiths PJ; Maéda Y; Rapp G; Ashley CC
    Biophys J; 1994 Nov; 67(5):1965-75. PubMed ID: 7858133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening.
    Hoskins BK; Ashley CC; Rapp G; Griffiths PJ
    Biophys J; 2001 Jan; 80(1):398-414. PubMed ID: 11159411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-bridge attachment and stiffness during isotonic shortening of intact single muscle fibers.
    Griffiths PJ; Ashley CC; Bagni MA; Maéda Y; Cecchi G
    Biophys J; 1993 Apr; 64(4):1150-60. PubMed ID: 8494976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness of frog muscle fibres during rise of tension and relaxation in fixed-end or length-clamped tetani.
    Cecchi G; Colomo F; Lombardi V; Piazzesi G
    Pflugers Arch; 1987 Jun; 409(1-2):39-46. PubMed ID: 3497383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pressure on equatorial x-ray fiber diffraction from skeletal muscle fibers.
    Knight PJ; Fortune NS; Geeves MA
    Biophys J; 1993 Aug; 65(2):814-22. PubMed ID: 8218906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of small release on force during sarcomere-isometric tetani in frog muscle fibers.
    Horowitz A; Wussling HP; Pollack GH
    Biophys J; 1992 Jul; 63(1):3-17. PubMed ID: 1420874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single order-disorder transition generates tension during the Huxley-Simmons phase 2 in muscle.
    Davis JS; Harrington WF
    Biophys J; 1993 Nov; 65(5):1886-98. PubMed ID: 8298018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing.
    Brenner B; Yu LC
    Biophys J; 1985 Nov; 48(5):829-34. PubMed ID: 4074840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-length relation of isometric sarcomeres in fixed-end tetani.
    Horowitz A; Pollack GH
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C19-26. PubMed ID: 8430767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved X-ray diffraction studies on the effect of slow length changes on tetanized frog skeletal muscle.
    Amemiya Y; Iwamoto H; Kobayashi T; Sugi H; Tanaka H; Wakabayashi K
    J Physiol; 1988 Dec; 407():231-41. PubMed ID: 3267188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers.
    Cecchi G; Bagni MA; Griffiths PJ; Ashley CC; Maeda Y
    Science; 1990 Dec; 250(4986):1409-11. PubMed ID: 2255911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossbridge properties investigated by fast ramp stretching of activated frog muscle fibres.
    Bagni MA; Cecchi G; Colombini B
    J Physiol; 2005 May; 565(Pt 1):261-8. PubMed ID: 15774512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Active Lengthening and Shortening on Small-Angle X-ray Reflections in Skinned Skeletal Muscle Fibres.
    Joumaa V; Smith IC; Fukutani A; Leonard TR; Ma W; Mijailovich SM; Irving TC; Herzog W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle.
    Higuchi H
    Biophys J; 1987 Jul; 52(1):29-32. PubMed ID: 3496923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved synchrotron X-ray diffraction studies of a single frog skeletal muscle fiber. Time courses of intensity changes of the equatorial reflections and intracellular Ca2+ transients.
    Konishi M; Wakabayashi K; Kurihara S; Higuchi H; Onodera N; Umazume Y; Tanaka H; Hamanaka T; Amemiya Y
    Biophys Chem; 1991 Mar; 39(3):287-97. PubMed ID: 1863689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of solution tonicity on crossbridge properties and myosin lever arm disposition in intact frog muscle fibres.
    Colombini B; Bagni MA; Cecchi G; Griffiths PJ
    J Physiol; 2007 Jan; 578(Pt 1):337-46. PubMed ID: 17023505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.