These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 1874031)

  • 41. Regulatory roles of nitric oxide and angiotensin II on renal tubular transport.
    Horita S; Nakamura M; Shirai A; Yamazaki O; Satoh N; Suzuki M; Seki G
    World J Nephrol; 2014 Nov; 3(4):295-301. PubMed ID: 25374825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of renal proximal tubule transport in the regulation of blood pressure.
    Horita S; Nakamura M; Suzuki M; Satoh N; Suzuki A; Homma Y; Nangaku M
    Kidney Res Clin Pract; 2017 Mar; 36(1):12-21. PubMed ID: 28428931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acute renal failure.
    Bidani A; Churchill PC
    Dis Mon; 1989 Feb; 35(2):57-132. PubMed ID: 2647437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calcitonin gene products and the kidney.
    Kurtz A; Muff R; Fischer JA
    Klin Wochenschr; 1989 Sep; 67(17):870-5. PubMed ID: 2681965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intrarenal renin-angiotensin system in regulation of glomerular function.
    Navar LG
    Curr Opin Nephrol Hypertens; 2014 Jan; 23(1):38-45. PubMed ID: 24275770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acute renal failure: the glomerular and tubular connection.
    Bird JE; Blantz RC
    Pediatr Nephrol; 1987 Jul; 1(3):348-58. PubMed ID: 3153299
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Experimental pharmacology of the in vivo kidney: renal actions of cAMP-related drugs].
    Hisa H
    Nihon Yakurigaku Zasshi; 2000 Feb; 115(2):89-98. PubMed ID: 10876795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Endocrine control of renal handling of solutes and water in vertebrates.
    Nishimura H
    Ren Physiol; 1985; 8(4-5):279-300. PubMed ID: 3906800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tubular shear stress and phenotype of renal proximal tubular cells.
    Essig M; Friedlander G
    J Am Soc Nephrol; 2003 Jun; 14 Suppl 1():S33-5. PubMed ID: 12761236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Renal hemodynamic and tubular effects of angiotensins II and III.
    Huang WC
    Chin J Physiol; 1991; 34(1):121-38. PubMed ID: 1874031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of intrarenally generated angiotensin II on renal hemodynamics and tubular reabsorption.
    Mitchell KD; Navar LG
    Ren Physiol Biochem; 1991; 14(4-5):155-63. PubMed ID: 1708902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergistic intrarenal actions of angiotensin on tubular reabsorption and renal hemodynamics.
    Navar LG; Saccomani G; Mitchell KD
    Am J Hypertens; 1991 Jan; 4(1 Pt 1):90-6. PubMed ID: 2007003
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tubular transport responses to angiotensin.
    Harris PJ; Navar LG
    Am J Physiol; 1985 May; 248(5 Pt 2):F621-30. PubMed ID: 3887946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Blood pressure and renal hemodynamic effects of angiotensin fragments.
    Yang R; Smolders I; Dupont AG
    Hypertens Res; 2011 Jun; 34(6):674-83. PubMed ID: 21412242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]     [New Search]
    of 3.