BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1874167)

  • 1. Evidence for bidirectional interconversion of mammotropes and somatotropes: rapid reversion of acidophilic cell types to pregestational proportions after weaning.
    Porter TE; Wiles CD; Frawley LS
    Endocrinology; 1991 Sep; 129(3):1215-20. PubMed ID: 1874167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the mammosomatotrope a transitional cell for the functional interconversion of growth hormone- and prolactin-secreting cells? Suggestive evidence from virgin, gestating, and lactating rats.
    Porter TE; Hill JB; Wiles CD; Frawley LS
    Endocrinology; 1990 Dec; 127(6):2789-94. PubMed ID: 2123441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steroids can modulate transdifferentiation of prolactin and growth hormone cells in bovine pituitary cultures.
    Kineman RD; Faught WJ; Frawley LS
    Endocrinology; 1992 Jun; 130(6):3289-94. PubMed ID: 1597141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammosomatotropes are abundant in bovine pituitaries: influence of gonadal status.
    Kineman RD; Faught WJ; Frawley LS
    Endocrinology; 1991 May; 128(5):2229-33. PubMed ID: 1902164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuations in the proportions of growth hormone- and prolactin-secreting cells during the bovine estrous cycle.
    Kineman RD; Henricks DM; Faught WJ; Frawley LS
    Endocrinology; 1991 Sep; 129(3):1221-5. PubMed ID: 1874168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of prolactin cells in neonatal rats: initial prolactin secretors also release growth hormone.
    Hoeffler JP; Boockfor FR; Frawley LS
    Endocrinology; 1985 Jul; 117(1):187-95. PubMed ID: 3891313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal differentiation of prolactin cells in neonatal rats requires a maternal signal specific to early lactation.
    Porter TE; Chapman LE; van Dolah FM; Frawley LS
    Endocrinology; 1991 Feb; 128(2):792-6. PubMed ID: 1989861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic estrogen treatment in male rats reveals mammosomatotropes and allows inhibition of prolactin secretion by somatostatin.
    Goth MI; Lyons CE; Ellwood MR; Barrett JR; Thorner MO
    Endocrinology; 1996 Jan; 137(1):274-80. PubMed ID: 8536623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uneven regional distributions of prolactin- and growth hormone-secreting cells and sexually dimorphic proportions of prolactin secretors in the adenohypophysis of adult chickens.
    Lopez ME; Hargis BM; Dean CE; Porter TE
    Gen Comp Endocrinol; 1995 Nov; 100(2):246-54. PubMed ID: 8582606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional variations among prolactin cells from different pituitary regions.
    Boockfor FR; Frawley LS
    Endocrinology; 1987 Mar; 120(3):874-9. PubMed ID: 3100286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothalamic factors differentially affect the proportions of cells that secrete growth hormone or prolactin.
    Hoeffler JP; Frawley LS
    Endocrinology; 1987 Feb; 120(2):791-5. PubMed ID: 3100281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification by plaque assays of a pituitary cell type that secretes both growth hormone and prolactin.
    Frawley LS; Boockfor FR; Hoeffler JP
    Endocrinology; 1985 Feb; 116(2):734-7. PubMed ID: 3881246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pituitaries transplanted under the renal capsule contain functional growth hormone (GH) secretors and suppress GH and prolactin release from individual eutopic pituitary cells.
    Porter TE; Chen TT; Frawley LS
    Endocrinology; 1989 Dec; 125(6):3059-67. PubMed ID: 2510989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cellular basis for growth hormone deficiency in the dwarf rat: analysis of growth hormone and prolactin release by reverse hemolytic plaque assay.
    Kineman RD; Chen TT; Frawley LS
    Endocrinology; 1989 Oct; 125(4):2035-40. PubMed ID: 2676477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suckling increases the proportions of mammotropes responsive to various prolactin-releasing stimuli.
    Nagy GM; Frawley LS
    Endocrinology; 1990 Nov; 127(5):2079-84. PubMed ID: 2226301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of prolactin cell differentiation in vitro by a milk-borne peptide.
    Porter TE; Frawley LS
    Endocrinology; 1991 Nov; 129(5):2707-13. PubMed ID: 1935799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultures of GH3 cells contain both single and dual hormone secretors.
    Boockfor FR; Schwarz LK
    Endocrinology; 1988 Feb; 122(2):762-4. PubMed ID: 3123205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultures of GH3 cells are functionally heterogeneous: thyrotropin-releasing hormone, estradiol and cortisol cause reciprocal shifts in the proportions of growth hormone and prolactin secretors.
    Boockfor FR; Hoeffler JP; Frawley LS
    Endocrinology; 1985 Jul; 117(1):418-20. PubMed ID: 3924583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colocalization of prolactin and growth hormone within specific adenohypophyseal cells in male, female, and lactating female rats.
    Nikitovitch-Winer MB; Atkin J; Maley BE
    Endocrinology; 1987 Aug; 121(2):625-30. PubMed ID: 3595534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative importance of newly synthesized and stored hormone to basal secretion by growth hormone and prolactin cells.
    Chen TT; Kineman RD; Betts JG; Hill JB; Frawley LS
    Endocrinology; 1989 Oct; 125(4):1904-9. PubMed ID: 2507285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.