These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 187442)
1. Potentiation of excitatory synaptic transmission in the normal and in the reinnervated dentate gyrus of the rat. Steward O; White CW; Cotman CW; Lynch G Exp Brain Res; 1976 Nov; 26(4):423-41. PubMed ID: 187442 [TBL] [Abstract][Full Text] [Related]
2. Polysynaptic activation of the dentate gyrus of the hippocampal formation: an olfactory input via the lateral entorhinal cortex. Wilson RC; Steward O Exp Brain Res; 1978 Nov; 33(3-4):523-34. PubMed ID: 215436 [TBL] [Abstract][Full Text] [Related]
3. Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. I. Differences between normal and reinnervated dentate gyrus. Wilson RC J Neurophysiol; 1981 Aug; 46(2):324-38. PubMed ID: 6267216 [No Abstract] [Full Text] [Related]
4. Increased sensitivity to adenosine in the rat dentate gyrus molecular layer two weeks after partial entorhinal lesions. Kahle JS; Ułas J; Cotman CW Brain Res; 1993 Apr; 609(1-2):201-10. PubMed ID: 8508304 [TBL] [Abstract][Full Text] [Related]
5. Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. II. An evaluation of mechanisms utilizing dentate gyrus dually innervated by surviving ipsilateral and sprouted crossed temporodentate inputs. Wilson RC; Levy WB; Steward O J Neurophysiol; 1981 Aug; 46(2):339-55. PubMed ID: 6267217 [No Abstract] [Full Text] [Related]
6. Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-D-aspartate-dependent long-term potentiation. Hetherington PA; Austin KB; Shapiro ML Hippocampus; 1994 Aug; 4(4):422-38. PubMed ID: 7874234 [TBL] [Abstract][Full Text] [Related]
7. Altered synaptic transmission in dentate gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro. Green EJ; Greenough WT J Neurophysiol; 1986 Apr; 55(4):739-50. PubMed ID: 3009728 [TBL] [Abstract][Full Text] [Related]
8. A new type of lesion-induced synaptogenesis: I. Synaptic turnover in non-denervated zones of the dentate gyrus in young adult rats. Hoff SF; Scheff SW; Kwan AY; Cotman CW Brain Res; 1981 Oct; 222(1):1-13. PubMed ID: 7296257 [TBL] [Abstract][Full Text] [Related]
9. Re-establishment of electrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: innervation by the contralateral entorhinal cortex. Steward O; Cotman CW; Lynch GS Exp Brain Res; 1973 Nov; 18(4):396-414. PubMed ID: 4778785 [No Abstract] [Full Text] [Related]
10. Electrophysiological analysis of the projection from the contralateral entorhinal cortex to the dentate gyrus in normal rats. White WF; Goldowitz D; Lynch G; Cotman CW Brain Res; 1976 Sep; 114(2):201-9. PubMed ID: 963548 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the habituation-like changes in transmission in the temporodentate pathway of the rat. Harris EW; Lasher SS; Steward O Brain Res; 1979 Feb; 162(1):21-32. PubMed ID: 216463 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of synaptic potentiation during kindling of the perforant path. Sutula T; Steward O J Neurophysiol; 1986 Sep; 56(3):732-46. PubMed ID: 3023561 [TBL] [Abstract][Full Text] [Related]
13. A neurophysiological analysis of commissural projections to dentate gyrus of the rat. Deadwyler SA; West JR; Cotman CW; Lynch GS J Neurophysiol; 1975 Jan; 38(1):167-84. PubMed ID: 162942 [TBL] [Abstract][Full Text] [Related]
14. Functional effects of lesion-induced plasticity: long term potentiation in formal and lesion-induced temporodentate connections. Wilson RC; Levy WB; Steward O Brain Res; 1979 Oct; 176(1):65-78. PubMed ID: 487184 [TBL] [Abstract][Full Text] [Related]
15. Reinnervation of dentate gyrus by homologous afferents following entorhinal cortical lesions in adult rats. Steward O Science; 1976 Oct; 194(4263):426-8. PubMed ID: 982024 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of glutamate release by presynaptic kappa 1-opioid receptors in the guinea pig dentate gyrus. Simmons ML; Terman GW; Drake CT; Chavkin C J Neurophysiol; 1994 Oct; 72(4):1697-705. PubMed ID: 7823095 [TBL] [Abstract][Full Text] [Related]
17. Potentiation of the excitatory synaptic action of commissural, associational and entorhinal afferents to dentate granule cells. Steward O; White WF; Cotman CW Brain Res; 1977 Oct; 134(3):551-60. PubMed ID: 198066 [No Abstract] [Full Text] [Related]
18. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study. Canning KJ; Leung LS Hippocampus; 1997; 7(6):643-55. PubMed ID: 9443060 [TBL] [Abstract][Full Text] [Related]
19. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. Scharfman HE; Goodman JH; Du F; Schwarcz R J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904 [TBL] [Abstract][Full Text] [Related]
20. Associative synaptic potentiation and depression: quantification of dissociable modifications in the hippocampal dentate gyrus favors a particular class of synaptic modification equations. Lopez HS; Burger B; Dickstein R; Desmond NL; Levy WB Synapse; 1990; 5(1):33-47. PubMed ID: 2300905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]