BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1874749)

  • 1. An engineered liver glycogen phosphorylase with AMP allosteric activation.
    Coats WS; Browner MF; Fletterick RJ; Newgard CB
    J Biol Chem; 1991 Aug; 266(24):16113-9. PubMed ID: 1874749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric muscle and brain glycogen phosphorylases define protein domains governing isozyme-specific responses to allosteric activation.
    Crerar MM; Karlsson O; Fletterick RJ; Hwang PK
    J Biol Chem; 1995 Jun; 270(23):13748-56. PubMed ID: 7775430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the biochemical differences between rabbit muscle and human liver phosphorylase.
    Rath VL; Newgard CB; Sprang SR; Goldsmith EJ; Fletterick RJ
    Proteins; 1987; 2(3):225-35. PubMed ID: 3447179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative binding is not required for activation of muscle phosphorylase.
    Browner MF; Hwang PK; Fletterick RJ
    Biochemistry; 1992 Nov; 31(46):11291-6. PubMed ID: 1445866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular dichroism studies on glycogen phosphorylase from rabbit muscle. Interaction with the allosteric activator adenosine 5'-monophosphate.
    Shimomura S; Fukui T
    Biochemistry; 1976 Oct; 15(20):4438-46. PubMed ID: 974069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the activator sites of liver and muscle glycogen phosphorylase b.
    Kobayashi M; Soman G; Graves DJ
    J Biol Chem; 1982 Dec; 257(23):14041-7. PubMed ID: 6815186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism.
    Gómez-Foix AM; Coats WS; Baqué S; Alam T; Gerard RD; Newgard CB
    J Biol Chem; 1992 Dec; 267(35):25129-34. PubMed ID: 1334082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the active site gate of glycogen phosphorylase in allosteric inhibition and substrate binding.
    Buchbinder JL; Fletterick RJ
    J Biol Chem; 1996 Sep; 271(37):22305-9. PubMed ID: 8798388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of allosteric control in glycogen phosphorylase.
    Hudson JW; Golding GB; Crerar MM
    J Mol Biol; 1993 Dec; 234(3):700-21. PubMed ID: 8254668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of glycogen phosphorylase with 8-azidoadenosine 5'-monophosphate, a photoaffinity analog of AMP.
    Seery VL
    Biochim Biophys Acta; 1980 Mar; 612(1):195-204. PubMed ID: 6767498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of AMP analogs and their use for studies on the allosteric site of rabbit muscle glycogen phosphorylase b.
    Eguchi C; Suzuki K; Imahori K
    J Biochem; 1977 May; 81(5):1401-11. PubMed ID: 893359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP.
    Barford D; Hu SH; Johnson LN
    J Mol Biol; 1991 Mar; 218(1):233-60. PubMed ID: 1900534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potato and rabbit muscle phosphorylases: comparative studies on the structure, function and regulation of regulatory and nonregulatory enzymes.
    Fukui T; Shimomura S; Nakano K
    Mol Cell Biochem; 1982 Feb; 42(3):129-44. PubMed ID: 7062910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b.
    Johnson LN; Snape P; Martin JL; Acharya KR; Barford D; Oikonomakos NG
    J Mol Biol; 1993 Jul; 232(1):253-67. PubMed ID: 8331662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycogen phosphorylase and its converter enzymes in haemolysates of normal human subjects and of patients with type VI glycogen-storage disease. A study of phosphorylase kinase deficiency.
    Lederer B; Van Hoof F; Van den Berghe G; Hers H
    Biochem J; 1975 Apr; 147(1):23-35. PubMed ID: 168880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of species-independent, isozyme-specific amino-acid substitutions in mammalian muscle, brain and liver glycogen phosphorylases.
    Hudson JW; Hefferon KL; Crerar MM
    Biochim Biophys Acta; 1993 Jul; 1164(2):197-208. PubMed ID: 7916624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase.
    Kaiser A; Nishi K; Gorin FA; Walsh DA; Bradbury EM; Schnier JB
    Arch Biochem Biophys; 2001 Feb; 386(2):179-87. PubMed ID: 11368340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of an allosteric site in phosphorylase.
    Rath VL; Lin K; Hwang PK; Fletterick RJ
    Structure; 1996 Apr; 4(4):463-73. PubMed ID: 8740368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay between covalent and non-covalent regulation of glycogen phosphorylase. The role of different effectors of phosphorylase b on the phosphorylase b to a conversion rate.
    Morange M; Buc H
    Biochimie; 1979; 61(5-6):633-43. PubMed ID: 497253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,N6-etheno-AMP and 1,N6-etheno-2'-deoxy-AMP as probes of the activator site of glycogen phosphorylase from rabbit skeletal muscle.
    Vandenbunder B; Morange M; Buc H
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2696-700. PubMed ID: 1066682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.