These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 187478)

  • 1. Biodegradative adenosine triphosphate-DL-1-aminopropan-2-ol phosphotransferase in a pseudomonad capable of aminoacetone catabolism.
    Faulkner A; Turner JM
    Biochem Soc Trans; 1976; 4(3):506-8. PubMed ID: 187478
    [No Abstract]   [Full Text] [Related]  

  • 2. Microbial metabolism of amino alcohols. Aminoacetone metabolism via 1-aminopropan-2-ol in Pseudomonas sp. N.C.I.B. 8858.
    Faulkner A; Turner JM
    Biochem J; 1974 Feb; 138(2):263-76. PubMed ID: 4362743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial metabolism of amino alcohols. 1-Aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of Pseudomonas.
    Jones A; Turner JM
    Biochem J; 1973 May; 134(1):167-82. PubMed ID: 4723219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes of methylglyoxal metabolism in a Pseudomonad which rapidly metabolizes aminoacetone.
    Higgins IJ; Turner JM
    Biochim Biophys Acta; 1969 Jul; 184(2):464-7. PubMed ID: 4390194
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetic properties of triokinase from rat liver.
    Frandsen EK; Grunnet N
    Eur J Biochem; 1971 Dec; 23(3):588-92. PubMed ID: 5139220
    [No Abstract]   [Full Text] [Related]  

  • 6. The kinetic mechanism of glycerokinase.
    Janson CA; Cleland WW
    J Biol Chem; 1974 Apr; 249(8):2562-6. PubMed ID: 4362686
    [No Abstract]   [Full Text] [Related]  

  • 7. The phosphorylation and subsequent metabolism of 1-aminopropan-2-ol.
    Willetts A
    Biochim Biophys Acta; 1974 Oct; 362(3):448-56. PubMed ID: 4370488
    [No Abstract]   [Full Text] [Related]  

  • 8. L-Threonine catabolism via aminoacetone: a search for a pathway in bacteria.
    Bell SC; Turner JM
    Biochem Soc Trans; 1976; 4(3):497-500. PubMed ID: 187477
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of magnesium ion on brain mitochondrial respiration. I. Activation of brain mitochondrial phosphotransferases by magnesium ion.
    Sugano T; Nagai O
    J Biochem; 1971 Sep; 70(3):417-27. PubMed ID: 4256307
    [No Abstract]   [Full Text] [Related]  

  • 10. A nucleotide phosphotransferase from Escherichia coli. Purification and properties.
    Brunngraber EF; Chargaff E
    Biochemistry; 1973 Jul; 12(16):3005-12. PubMed ID: 4581144
    [No Abstract]   [Full Text] [Related]  

  • 11. Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaseolus aureus.
    Biswas S; Maity IB; Chakrabarti S; Biswas BB
    Arch Biochem Biophys; 1978 Jan; 185(2):557-66. PubMed ID: 626510
    [No Abstract]   [Full Text] [Related]  

  • 12. The kinetic characterization of gluconokinase from a pseudomonad.
    Coffee CJ; Hu AS
    Arch Biochem Biophys; 1972 Apr; 149(2):549-59. PubMed ID: 4666117
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of adenosine triphosphate on phosphoglycerate mutase activity from Hyphomicrobium X and Pseudomonas AM1 grown on reduced one-carbon compounds.
    Hill B; Attwood MM
    J Gen Microbiol; 1976 Dec; 97(2):335-8. PubMed ID: 188972
    [No Abstract]   [Full Text] [Related]  

  • 14. Activation of citrate synthase from a marine pseudomonad by adenosine monophosphate and potassium chloride.
    Massarini E; Cazzulo J
    FEBS Lett; 1974 Mar; 39(3):252-4. PubMed ID: 4859201
    [No Abstract]   [Full Text] [Related]  

  • 15. Microbial metabolism of amino ketones. L-1-aminopropan-2-ol dehydrogenase and L-threonine dehydrogenase in Escherichia coli.
    Turner JM
    Biochem J; 1967 Jul; 104(1):112-21. PubMed ID: 5340733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviour of flagella isolated from Crithidia oncopelti.
    Douglas GJ; Holwill ME
    J Mechanochem Cell Motil; 1972 Dec; 1(4):213-23. PubMed ID: 4371768
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations.
    Chulavatnatol M; Atkinson DE
    J Biol Chem; 1973 Apr; 248(8):2712-5. PubMed ID: 4572511
    [No Abstract]   [Full Text] [Related]  

  • 18. Modification of an essential arginine of carbamate kinase.
    Pillai RP; Marshall M; Villafranca JJ
    Arch Biochem Biophys; 1980 Jan; 199(1):16-20. PubMed ID: 6243907
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigations of substrate specificity and reaction mechanism of several kinases using chromium(III) adenosine 5'-triphosphate and chromium(III) adenosine 5'-diphosphate.
    Dunaway-Mariano D; Cleland WW
    Biochemistry; 1980 Apr; 19(7):1506-15. PubMed ID: 6248105
    [No Abstract]   [Full Text] [Related]  

  • 20. Purification and properties of l-1-aminopropan-2-ol. NAD oxidoreductase from a pseudomonad grown on DL-1-aminopropan-2-ol.
    Pickard MA; Higgins IJ; Turner JM
    J Gen Microbiol; 1968 Nov; 54(1):115-26. PubMed ID: 5729604
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.