These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 1875084)
1. Effect of nutritive elements on the extracellular protein of different Bacillus strains, toxic to mosquito larvae. Rady MH; el-Deen AF J Egypt Soc Parasitol; 1991 Aug; 21(2):575-83. PubMed ID: 1875084 [TBL] [Abstract][Full Text] [Related]
2. Effect of corn-steep liquor on growth and mosquito larvicidal activity of Bacillus thuringiensis var israelensis de Barjac 1978 and B. sphaericus Neide 1904. Kuppusamy M; Balaraman K Indian J Exp Biol; 1991 Feb; 29(2):187-9. PubMed ID: 1678365 [TBL] [Abstract][Full Text] [Related]
3. Production & formulation of Bacillus thuringiensis var. israelensis & B. sphaericus 1593. Desai SY; Shethna YI Indian J Med Res; 1991 Sep; 93():318-23. PubMed ID: 1778620 [TBL] [Abstract][Full Text] [Related]
4. Growth & toxicity of Bacillus thuringiensis var israelensis. Desai SY; Shethna YI Indian J Med Res; 1989 Sep; 89():314-21. PubMed ID: 2628294 [TBL] [Abstract][Full Text] [Related]
5. [The effect of water temperature on the action of bacterial insecticides against mosquito larvae]. Rasnitsyn SP; Voĭtsik AA; Iasiukevich VV Med Parazitol (Mosk); 1993; (1):8-10. PubMed ID: 8336659 [TBL] [Abstract][Full Text] [Related]
6. Isolation of mosquito-pathogenic Bacillus sphaericus & B. thuringiensis from the root surface of hydrophytes. Manonmani AM; Rajendran G; Balaraman K Indian J Med Res; 1991 Mar; 93():111-4. PubMed ID: 1855819 [TBL] [Abstract][Full Text] [Related]
7. Effect of Bacillus sphaericus and Bacillus thuringiensis on acid-phosphatase activity of mosquito larvae, Culex pipiens and Aedes caspius. Hussein MA; Hafez JA J Egypt Soc Parasitol; 1989 Jun; 19(1):195-203. PubMed ID: 2565356 [TBL] [Abstract][Full Text] [Related]
8. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related]
9. Comparative delta-endotoxins of Bacillus thuringiensis against mosquito vectors (Aedes aegypti and Culex pipiens). Lonc E; Kucińska J; Rydzanicz K Acta Microbiol Pol; 2003; 52(3):293-300. PubMed ID: 14743982 [TBL] [Abstract][Full Text] [Related]
10. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Wirth MC; Walton WE; Federici BA Environ Microbiol; 2010 May; 12(5):1154-60. PubMed ID: 20141526 [TBL] [Abstract][Full Text] [Related]
11. Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda: Cyclopidae), Bacillus thuringiensis var. israelensis, Bacillus sphaericus, and methoprene. Tietze NS; Hester PG; Shaffer KR; Prescott SJ; Schreiber ET J Am Mosq Control Assoc; 1994 Sep; 10(3):363-73. PubMed ID: 7807078 [TBL] [Abstract][Full Text] [Related]
12. Laboratory and field efficacy of Bacillus thuringiensis var. Israelensis and Bacillus sphaericus against Anopheles gambiae s.l. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. Majori G; Ali A; Sabatinelli G J Am Mosq Control Assoc; 1987 Mar; 3(1):20-5. PubMed ID: 3504891 [TBL] [Abstract][Full Text] [Related]
13. [The synergism between Mtx1 from Bacillus sphaericus and Cyt1 Aa from Bacillus thuringiensis to Culex quinquefasciatus]. Yang YK; Cai QX; Cai YJ; Yan JP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):456-60. PubMed ID: 17672305 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of Bacillus sphaericus and Bacillus thuringiensis var. israelensis for control of Culex pipiens and floodwater Aedes larvae in Iowa. Berry WJ; Novak MG; Khounlo S; Rowley WA; Melchior GL J Am Mosq Control Assoc; 1987 Dec; 3(4):579-82. PubMed ID: 3504943 [TBL] [Abstract][Full Text] [Related]
15. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Walton WE; Federici BA J Med Entomol; 2000 May; 37(3):401-7. PubMed ID: 15535584 [TBL] [Abstract][Full Text] [Related]
16. Compatibility of Bacillus thuringiensis var. Israelensis and Bacillus sphaericus with the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales). Orduz S; Axtell RC J Am Mosq Control Assoc; 1991 Jun; 7(2):188-93. PubMed ID: 1895077 [TBL] [Abstract][Full Text] [Related]
17. Large scale multiplication of Bacillus thuringiensis H. 14 asporogenic mutants & B. sphaericus strains for mosquito control. Balarman K; Bhatia MC; Tripathi SC; Hoti SL Indian J Med Res; 1987 Mar; 85():266-9. PubMed ID: 3610270 [No Abstract] [Full Text] [Related]
18. Cloning and expression of the binary toxin gene from Bacillus sphaericus IAB872 in a crystal-minus Bacillus thuringiensis subsp. israelensis. Shi Y; Yuan Z; Cai Q; Yu J; Yan J; Pang Y Curr Microbiol; 2001 Jul; 43(1):21-5. PubMed ID: 11375659 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A delta-endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito). Zghal RZ; Tounsi S; Jaoua S Biotechnol Appl Biochem; 2006 Apr; 44(Pt 1):19-25. PubMed ID: 16309381 [TBL] [Abstract][Full Text] [Related]
20. Comparative studies of the mosquito-larval toxin of Bacillus sphaericus SSII-1 and 1593. Myers P; Yousten AA; Davidson EW Can J Microbiol; 1979 Nov; 25(11):1227-31. PubMed ID: 540250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]