These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 18751529)
1. Fung's model of arterial wall enhanced with a failure description. Volokh KY Mol Cell Biomech; 2008 Sep; 5(3):207-16. PubMed ID: 18751529 [TBL] [Abstract][Full Text] [Related]
2. Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening. Volokh KY J Biomech; 2008; 41(2):447-53. PubMed ID: 17880984 [TBL] [Abstract][Full Text] [Related]
3. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Horgan CO; Saccomandi G Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694 [TBL] [Abstract][Full Text] [Related]
4. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion. Van Epps JS; Vorp DA J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508 [TBL] [Abstract][Full Text] [Related]
5. Passive mechanical properties of porcine left circumflex artery and its mathematical description. Carboni M; Desch GW; Weizsäcker HW Med Eng Phys; 2007 Jan; 29(1):8-16. PubMed ID: 16497534 [TBL] [Abstract][Full Text] [Related]
8. Assessing the use of the "opening angle method" to enforce residual stresses in patient-specific arteries. Alastrué V; Peña E; Martínez MA; Doblaré M Ann Biomed Eng; 2007 Oct; 35(10):1821-37. PubMed ID: 17638082 [TBL] [Abstract][Full Text] [Related]
9. Simulation of soft tissue failure using the material point method. Ionescu I; Guilkey JE; Berzins M; Kirby RM; Weiss JA J Biomech Eng; 2006 Dec; 128(6):917-24. PubMed ID: 17154694 [TBL] [Abstract][Full Text] [Related]
11. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. Speirs DC; de Souza Neto EA; Perić D J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766 [TBL] [Abstract][Full Text] [Related]
12. Introducing mesoscopic information into constitutive equations for arterial walls. Ogden RW; Saccomandi G Biomech Model Mechanobiol; 2007 Sep; 6(5):333-44. PubMed ID: 17124617 [TBL] [Abstract][Full Text] [Related]
13. Mechanical events within the arterial wall: The dynamic context for elastin fatigue. Hodis S; Zamir M J Biomech; 2009 May; 42(8):1010-6. PubMed ID: 19386312 [TBL] [Abstract][Full Text] [Related]
14. Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models. Veljković DŽ; Ranković VJ; Pantović SB; Rosić MA; Kojić MR Acta Bioeng Biomech; 2014; 16(3):37-45. PubMed ID: 25308095 [TBL] [Abstract][Full Text] [Related]
15. A model of growth and rupture of abdominal aortic aneurysm. Volokh KY; Vorp DA J Biomech; 2008; 41(5):1015-21. PubMed ID: 18255074 [TBL] [Abstract][Full Text] [Related]
16. A theoretical framework to analyze bend testing of soft tissue. Nicosia MA J Biomech Eng; 2007 Feb; 129(1):117-20. PubMed ID: 17227106 [TBL] [Abstract][Full Text] [Related]
17. Application of fracture mechanics to failure in manatee rib bone. Yan J; Clifton KB; Reep RL; Mecholsky JJ J Biomech Eng; 2006 Jun; 128(3):281-9. PubMed ID: 16706577 [TBL] [Abstract][Full Text] [Related]
19. Determination of material models for arterial walls from uniaxial extension tests and histological structure. Holzapfel GA J Theor Biol; 2006 Jan; 238(2):290-302. PubMed ID: 16043190 [TBL] [Abstract][Full Text] [Related]
20. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. Maher E; Creane A; Lally C; Kelly DJ J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]