These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18751900)

  • 1. Constitutive modeling of rate-dependent stress-strain behavior of human liver in blunt impact loading.
    Sparks JL; Dupaix RB
    Ann Biomed Eng; 2008 Nov; 36(11):1883-92. PubMed ID: 18751900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo mechanical characterization of human liver.
    Nava A; Mazza E; Furrer M; Villiger P; Reinhart WH
    Med Image Anal; 2008 Apr; 12(2):203-16. PubMed ID: 18171633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of human lung parenchyma.
    Gao J; Huang W; Yen RT
    Biomed Sci Instrum; 2006; 42():172-80. PubMed ID: 16817604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates.
    Johnson TP; Socrate S; Boyce MC
    Acta Biomater; 2010 Oct; 6(10):4073-80. PubMed ID: 20417735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On modelling nonlinear viscoelastic effects in ligaments.
    Peña E; Peña JA; Doblaré M
    J Biomech; 2008 Aug; 41(12):2659-66. PubMed ID: 18672245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    Med Eng Phys; 2011 May; 33(4):438-45. PubMed ID: 21167763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive modeling of human liver based on in vivo measurements.
    Mazza E; Grau P; Hollenstein M; Bajka M
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):726-33. PubMed ID: 18982669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of elastic modulus evolution of cirrhotic human liver.
    Yin HM; Sun LZ; Wang G; Vannier MW
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1854-6. PubMed ID: 15490833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive behavior of a turtle's shell: experiment, modeling, and simulation.
    Damiens R; Rhee H; Hwang Y; Park SJ; Hammi Y; Lim H; Horstemeyer MF
    J Mech Behav Biomed Mater; 2012 Feb; 6():106-12. PubMed ID: 22301179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large deformation shear properties of liver tissue.
    Liu Z; Bilston LE
    Biorheology; 2002; 39(6):735-42. PubMed ID: 12454439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A real time hyperelastic tissue model.
    Zhong H; Peters T
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):185-93. PubMed ID: 17558647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.