BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 18752413)

  • 1. When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring.
    Vallesi A; McIntosh AR; Shallice T; Stuss DT
    J Cogn Neurosci; 2009 Jun; 21(6):1116-26. PubMed ID: 18752413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attending to multiple visual streams: interactions between location-based and category-based attentional selection.
    Fagioli S; Macaluso E
    J Cogn Neurosci; 2009 Aug; 21(8):1628-41. PubMed ID: 18823252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory effects of speech and gesture binding: cortical and hippocampal activation in relation to subsequent memory performance.
    Straube B; Green A; Weis S; Chatterjee A; Kircher T
    J Cogn Neurosci; 2009 Apr; 21(4):821-36. PubMed ID: 18578601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural basis of lip-reading capabilities is altered by early visual deprivation.
    Putzar L; Goerendt I; Heed T; Richard G; Büchel C; Röder B
    Neuropsychologia; 2010 Jun; 48(7):2158-66. PubMed ID: 20385153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional neuroanatomy of mental rotation.
    Milivojevic B; Hamm JP; Corballis MC
    J Cogn Neurosci; 2009 May; 21(5):945-59. PubMed ID: 18702586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH; Maguire RP; Leenders KL; de Jong BM
    Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI.
    Tang K; Staines WR; Black SE; McIlroy WE
    J Neurosci Methods; 2009 Mar; 178(1):65-74. PubMed ID: 19109997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal preparation in aging: a functional MRI study.
    Vallesi A; McIntosh AR; Stuss DT
    Neuropsychologia; 2009 Nov; 47(13):2876-81. PubMed ID: 19545578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex.
    Vinberg J; Grill-Spector K
    J Neurophysiol; 2008 Mar; 99(3):1380-93. PubMed ID: 18171705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct neural correlates for resolving stroop conflict at inhibited and noninhibited locations in inhibition of return.
    Chen Q; Wei P; Zhou X
    J Cogn Neurosci; 2006 Nov; 18(11):1937-46. PubMed ID: 17069483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural representation of interval encoding and decision making.
    Harrington DL; Boyd LA; Mayer AR; Sheltraw DM; Lee RR; Huang M; Rao SM
    Brain Res Cogn Brain Res; 2004 Oct; 21(2):193-205. PubMed ID: 15464351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions.
    Aarts E; Roelofs A; van Turennout M
    Neuropsychologia; 2009 Aug; 47(10):2089-99. PubMed ID: 19467359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex differences in neural responses to disgusting visual stimuli: implications for disgust-related psychiatric disorders.
    Caseras X; Mataix-Cols D; An SK; Lawrence NS; Speckens A; Giampietro V; Brammer MJ; Phillips ML
    Biol Psychiatry; 2007 Sep; 62(5):464-71. PubMed ID: 17306771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the right hemisphere in processing nonsalient metaphorical meanings: application of principal components analysis to fMRI data.
    Mashal N; Faust M; Hendler T
    Neuropsychologia; 2005; 43(14):2084-100. PubMed ID: 16243053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain mechanisms underlying perceptual causality.
    Fugelsang JA; Roser ME; Corballis PM; Gazzaniga MS; Dunbar KN
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):41-7. PubMed ID: 15922156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting.
    Zhou X; Chen Q
    Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of cue-unique outcome expectations under differential outcomes training: an fMRI study.
    Mok LW; Thomas KM; Lungu OV; Overmier JB
    Brain Res; 2009 Apr; 1265():111-27. PubMed ID: 19401182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An fMRI study of neuronal interactions in face-selective areas of the brain.
    Sung YW; Choi SH; Hong SJ; Choi US; Cho JH; Ogawa S
    Brain Res; 2010 Dec; 1366():54-9. PubMed ID: 20950590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of conflicting cues in an attention-shift paradigm studied with fMRI.
    Thomsen T; Specht K; Ersland L; Hugdahl K
    Neurosci Lett; 2005 May 20-27; 380(1-2):138-42. PubMed ID: 15854766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cerebral basis of mapping nonsymbolic numerical quantities onto abstract symbols: an fMRI training study.
    Lyons IM; Ansari D
    J Cogn Neurosci; 2009 Sep; 21(9):1720-35. PubMed ID: 18823231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.